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Abstract

The study of gravitational waves will be of great importance in future
cosmology, but we can already develop useful research right now, in order
to ful�l useful achievements for future observations. Here, I study the ar-
rival time di�erence, due to gravitational lensing, between gravitational and
electromagnetic signals coming from the same source. The number of article
in literature about lensed gravitational waves and multimessenger cosmol-
ogy is growing with time, especially in the last years, but there is only one
article with the same purpose, Takahashi, 2016, and it is a good starting
point for my work. My thesis focuses on gravitational waves with much lower
frequencies. Earth observatories for gravitational waves are not sensible in
these frequency regime. These waves, therefore, are studied by pulsar timing
arrays (PTAs). PTAs study the time of arrival of the signals from millisec-
ond pulsars, which are the best clocks in the universe. With this method,
PTAs will be capable of detecting gravitational waves with frequency up to
f ∼ 10−8/10−9 Hz.
A time delay is expected between gravitational and electromagnetic signals
because of their large di�erence in frequency. Indeed, in the case of the elec-
tromagnetic light, we can study its bent path due to gravity in the geometrical
optics regime, i.e. we can treat light propagation in terms of rays. For gravita-
tional waves with low frequencies wave optics is needed, that is, integrating
the ray optics study over the whole surface of the wave. For this reason,
gravitational and electromagnetic signals are expected to behave di�erently
passing near a mass and, therefore, their time of arrival will be di�erent. In
particular, the wavelength of the gravitational wave being very large (λ ∼ 1
pc), it will "feel" the lens less, and pass almost unperturbed, with respect to
light, that has a much shorter wavelength.
The sources of such large gravitational waves are super massive binary black-
holes (SMBBHs). Their study is fundamental to understand what kind of
signal we are looking for, and that is why the chapter about these systems is
the longest in this thesis. The interesting part is the electromagnetic signal
associated with such peculiar sources. It is expected to be unique and, there-
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iv ABSTRACT

fore, "easily" recognizable and it should give di�erent informations about the
system, such as, for example, its period.
The �nal goal of the thesis is to understand the feasibility of such obser-
vations. Starting from di�erent result and equations from literature, I show
that, for next generation observatories, this feature will be observable with
good precision, for a large range of sources. With current technologies, the
task is harder, and only a lucky case could be actually observed.
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Chapter 1

Introduction

The �eld of cosmology is incredibly wide and comprehend numerous and
very di�erent tasks. A great innovation will be brought, in large part of these
subject, when we will be capable of study gravitational waves well enough.
In the last years, the research and interest about gravitational waves has
increased considerably. Almost two years ago (September 2015) the �rst di-
rect observation of a gravitational wave was made by the two detectors of
the Laser Interferometer Gravitational-Wave Observatory (LIGO), (Abbott,
2016). This observation opened a whole new �eld of study in astrophysics.
As new observatories - such as VIRGO and Advanced VIRGO, in Italy, the
Japanese groundbased interferometer KAGRA (the KAmioka GRAvitational
wave detector), eLISA (the Evolved Laser Interferometer Space Antenna),
and DECIGO (the DECi-hertz Interferometer Gravitational wave Observa-
tory) - will be completed and begin operations, they will give us a new pow-
erful instrument to study the universe. Moreover, another method is being
developed and used to study gravitational signals with much lower frequency,
the pulsar timing array. This method is taken into account for my work and
it will be explained later on in this thesis.
In this work, I will study the arrival time di�erences, due to gravitational
lensing, between gravitational waves and electromagnetic signals, emitted by
one source at the same time or with known intrinsic time-delays. A �rst work
on this topic has been developed by Takahashi, 2016. He studied the cases of
two lens con�gurations (point mass and singular isothermal sphere lens) for
monochromatic and chirp signals in a given range of wavelengths. He found
that the lens imprints a characteristic modulation on a chirp waveform, so
that one can be sure that the time delay is due to the lens; and that there
will be a delay between gravitational and electromagnetic signal, due to the
di�erent wavelengths of the signals.

1



2 CHAPTER 1. INTRODUCTION

First of all, there are some basic fact we have to understand for what we are
going to discuss. The main subjects are:

1.1 Gravitational Waves

1.2 Gravitational Lensing

1.3 Geometrical Optics & Wave Optics

1.1 Gravitational Waves
Gravitational waves (GWs) are tensor perturbations of the metric induced

by a time variation of the second derivative of the quadrupole moment tensor
of the energy density of the source.
Gravitational waves follow directly from the general theory of relativity. We
can deduce their existence starting from Einstein equations. The complete1

set of Einstein equations are

Rαβ −
1

2
Rgαβ =

8πG

c4
Tαβ, (1.1)

where gαβ is the metric, Rαβ is the Ricci tensor (contraction of the Riemann
curvature Rγ

αθβ with the metric gγθ), R is the Ricci scalar (contraction of
Ricci tensor with the metric) and Tαβ is the energy-stress tensor. First, we
use the weak �eld approximation, where we can rewrite gµν as

gµν = ηµν + hµν . (1.2)

Here ηµν is the Minkowski �at space-time metric and hµν is a small pertur-
bation of the �at space-time, hµν � 1. We can write Einstein equations in
term of the metric gµν

2, and simplify them if we consider a change in coor-
dinates: x′α = xα + ξα(x), called gauge transformation, where ξα(x) is small.
Using this change, we obtain a new metric h′αβ = hαβ − ∂αξβ − ∂βξα. The
point is, ξα(x) being arbitrary functions, we can set them in order to have3

Vα = ∂δh
δ
α− 1

2
∂αh

γ
γ = 0, known as Lorenz gauge. In this case, the Lorenz gauge

can be written in the simple form: ∂β∂h̄
αβ = 0, where h̄αβ ≡ hαβ − 1

2
ηαβh is

the trace-reverse perturbation. Substituting this perturbation in the Einstein
tensor Gαβ = Rαβ − 1

2
Rgαβ, using the Lorenz gauge yields

�h̄αβ = −16πG

c4
Tαβ, (1.3)

1 We are not taking into account any cosmological constants or similar.
2 I derived it here only for the case of empty space, paragraph 1.1.1.
3 We will see later, eq. (1.5), what is the reason of this choice.
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where � ≡ ηαβ ∂2

∂xα∂xβ
= − ∂2

∂t2
+ ∇2 is the d'Alambert operator. This is the

linearised Einstein equation for weak sources, and can be seen as a general
gravitational wave equation, where the d'Alambertian is the wave operator
and the energy-stress tensor Tαβ is the source.

1.1.1 GWs in empty space
We infer the form of the waves in empty space, far away from any mass-

energy source. We know that in vacuum, Einstein equations (1.1) are reduced
to Rµν = 0. Rewriting the Ricci tensor in terms of the metric (1.2), we �nd
Rµν = (Rµν)0 + δRµν = 0 where (Rµν)0 is the Ricci tensor calculated in �at
space-time, so it equals zero and therefore we are left with δRµν = 04. We now
want to show explicitly δRµν = 0 in terms of hµν(x). Using the expression
for Ricci tensor in terms of the Christo�el symbols, and of this one in terms
of the metric, we �nd

δRαβ =
1

2

[
−�hαβ + ∂α

(
∂γh

γ
β −

1

2
∂βh

γ
γ

)
+ ∂β

(
∂δh

δ
α −

1

2
∂αh

γ
γ

)]
= 0.

(1.4)
De�ning Vα = ∂δh

δ
α − 1

2
∂αh

γ
γ, we obtain

δRαβ =
1

2
(−�hαβ + ∂αVβ + ∂βVα) . (1.5)

We can further simplify this equation using the Lorenz gauge, and it will
�nally give us:

�hαβ = 0. (1.6)

This is the gravitational wave equation in empty space.
A solution, f(x), for this equation can be written, f(x) = Aeik

µxµ . It follows
that �f(x) = −kµkµf(x) = 0, from which we can infer that kµkµ = 0. This

means that kµ = (|~k|, ~k) is a null four-vector and that the gravitational waves
travel at the speed of light, since we are using the natural units, where c = 1.
This is an important result for our discussion, because we just proved that
if GWs and Electromagnetic (EM) waves are emitted at the same time, any
arrival time di�erences between the signals is to be explained by some other
cause, being their speed in vacuum the same. It is also true that massive
gravity theories are developing in last years. In that case, the graviton being
massive, the speed of GWs should be less than the speed of light. In this
work, though, we consider the classic meaning of general relativity theory. A

more general solution of the wave equation is f(x) =
∫
d3ka(~k)eik

µxµ , given

4 This is a set of 10 linear, partial di�erential equation for hµν(x).
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by the superposition of waves with di�erent frequencies.
In term of the metric, the solution is

hαβ(x) = aαβe
ikµxµ , (1.7)

where aαβ is a constant, symmetric (0,2) tensor. Again, from the Lorenz

gauge we can set a0,β = 0 and aββ = 0. From the latter equation and Vα = 0,

we �nd kjaij = 0. That shows that gravitational waves are transverse, as are
EM waves.
In order to �nd an explicit solution to the wave equation, we simplify the
problem and select spatial coordinates such that the wave is travelling in the
z direction. Then kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω). Putting together all the
conditions seen before will lead us to5:

hαβ =


0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

 eiω(z−t). (1.8)

It is straightforward to see that there are two polarizations of the waves.
These are proportional to a or b, and are usually called the +(plus) and the
×(cross) polarization. The most general solution is given by the superposition
of waves with di�erent ω, di�erent direction of propagation and di�erent
amplitudes for the two kinds of polarization.

1.1.2 Emission of GWs
We now want to study the generation of gravitational waves by matter

sources. Eq. (1.3) can be seen as a general equation of the type,

− ∂2f(x)

∂t2
+∇2f(x) = j(x), (1.9)

with f(x) being the metric and j(x) the source. The solution to this equa-
tion can be achieved through the Green function g(t, r), �rst considering the
source as a δ-function located in a de�nite point in the space-time. The δ-
function being hard to deal with, we take eq. (1.9), integrate both sides of it
over a small valume of radius r, and make r go to zero. We then �nd,

lim
r→0

∫
r

d3x�g(xµ) = lim
r→0

∫
r

d3xδ(t)δ(3)(~x) = δ(t), (1.10)

5 This choice of coordinates in which the transverse and traceless condition are repre-
sented explicitly is called transverse-traceless gauge, or TT-gauge.
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where the part involving the time (∂2g/∂t2) goes to zero as r → 06. Now,
substituting g(t, r) = O(t−r)/r, that is, the retarded solution of the homoge-
neous part of eq. (1.9), with O(·) a general function, we �nd −4πO(t) = δ(t)
and the solution g(t, r) will be

g(t, r) = −δ(t− r)
4πr

. (1.11)

This solution is for a δ-function source at the origin and an outgoing wave.
Generalizing the result, which means taking into account that the source is

extended and not just a point, f(t, ~x) = − 1
4π

∫
d3x′ [j(t

′,~x′)]ret
|~x−~x′| , where [ · ]ret

means that the argument should be evaluated at retarded time, the solution7

becomes

h̄αβ(t, ~x) = 4

∫
d3x′

[Tαβ(t′, ~x′)]ret
|~x− ~x′|

(1.12)

for h̄αβ with the source −16πTαβ. Far away from the source, the solution will
be8

h̄αβ(t, ~x) −−−→
r→∞

4

r

∫
d3x′[Tαβ(t− r, ~x′)]ret. (1.13)

Now, if we use the conservation law for Tαβ, and assume that the source
moves with non relativistic velocities, we �nally �nd9:

h̄ij(t, ~x) −−−→
r→∞

2G

r
Ï ij(t− r), (1.14)

where I ij(t) ≡
∫
d3xxixjρ(t, ~x) is the quadrupole moment tensor of the en-

ergy density of the source.

Binary stars

A starting point for understanding the work by Takahashi, 2016 - where
they studied gravitational waves that may come, among other sources, from

6 g →∞ for r → 0 but the volume element is decreasing as 4πr2.
7 j(t′, ~x′) comes from �f(x) = j(x), j(x) ≡ δ(t)δ(x)δ(y)δ(z) represents the source.

The prime is to refer at the retarded (or the source) quantities.
8 The asymptotic solution far from a source, whose size is much smaller than the

wavelength, is

f(t, x̄) −−−→
r→∞

− 1

4πr

∫
d3x′j(t− r, x̄′).

9 For more details, see Appendix A.
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binary neutron star (NS) mergers, NS�BH mergers, or BH-BH binaries - is to
consider a system composed by two stars. Therefore, we consider two stars of
equal massM, whose motion is in the x-y plane, orbiting around the common
barycentre (see Figure 1.1). Then, we write,

x(t) = R cos(Ωt), y(t) = R sin(Ωt), z(t) = 0, (1.15)

where R is the radius of the orbit, and Ω the orbital frequency of the stars.
Therefore, the components of the quadrupole momentum are

Ixx = 2MR2 cos2(Ωt) = MR2[1 + cos(2Ωt)] (1.16a)

Ixy = 2MR2 cos(Ωt) sin(Ωt) = MR2[sin(2Ωt)] (1.16b)

Iyy = 2MR2 sin2(Ωt) = MR2[1 + sin(2Ωt)] (1.16c)

so, considering equation (1.14), we end up with

h̄ij =−−−→
r→∞

−8GΩ2MR2

r

cos[2Ω(t− r)] sin[2Ω(t− r)] 0
sin[2Ω(t− r)] − cos[2Ω(t− r)] 0

0 0 0

 . (1.17)

The frequency of the emitted radiation is thus twice the orbital frequency,
Ω.
Generalizing this result to any binary inclination with respect to the line of
sight, and binary with di�erent mass stars, gives(

h+(t)
hx(t)

)
=

1

r

4GµΩ2R2

c4

(
(1 + cos2 ι) cos(2Ω(t))

cos ι sin(2Ω(t))

)
, (1.18)

where µ = m1m2/m1 + m2, and ι is the angle between the rotation axis of
the binary and the line of sight.

About GW in Takahashi, 2016

Takahashi considers gravitational waves with wavelengths large enough
to be in the wave optics regimea, with frequencies of about 10 Hz to 1
kHz. There are also cases, for example when the sources responsible for
the signals are merging (see Fig. 4 in the paper), where the wavelength
shortens enough to be close to the geometrical optics regime. In that case,
multiple images form and we see a modulation (interference pattern) of
the total wave. In this thesis, I study gravitational waves with larger
wavelengths, described by wave optics. As we will see, the limit between
geometrical and wave optics depends also on the lens mass. I consider
galaxies as lenses, i.e. with mass ≈ 1011 M�. The frequency range in this
case is between 10−6 and 10−8 Hz, corresponding to a period between 10
days and 1 year.

a See chapter 1.3.
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Figure 1.1: Binary star system.

1.2 Gravitational Lensing
From general relativity, we know that light passing close to a mass (e.g.

a star, a galaxy or a galaxy cluster), is bent by the gravitational �eld of the
mass, that is, the lens. Therefore, light does not follow a "straight" line but
changes direction, as when it �ows from a medium to another with di�erent
refraction index. In this case, the refraction index, n, is given by the potential:

n = 1− 2

c2
φ, (1.19)

where φ is the Newtonian potential. Because of this, we can deduce that light
will travel slower near the source and will have a delay with respect to the
light travelling in a �at space-time. The delay can be calculated using the
Shapiro time delay, equation (1.20).

Shapiro time delay General relativity tells us that a clock slows down, as the
gravitational �eld which the clock is immersed in increases. For this reason,
c being constant, if time slows down, then light has a delay with respect to
light that passes through �at space-time (or through a weaker gravitational
�eld). That is because if light takes 1 second to travel 3 · 108 m and 1 second
"lasts longer" in a stronger gravitational �eld, then it is as if light is slowed
down. We can quantify this delay by the equation:

∆t =

∫
observer

source

2

c3
|φ|dl (1.20)
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where φ is the potential of the gravitational �eld.

Before going on studying two speci�c lens con�gurations, let us de�ne
two more quantities that are useful for later discussions.

Effective lensing potential We de�ne an e�ective lensing potential, ψ, such
that ~∇θψ = ~α, where ~α is the de�ection angle de�ned in eq. (1.26), and

∇2
θψ = 2Σ(~θ)

Σcr
≡ 2κ(~θ), where κ(~θ) is called the convergence. The local prop-

erties of the lens mapping are described by the Jacobian matrix

A ≡ ∂~β

∂~θ
=M−1, (1.21)

whereM is the magni�cation tensor. Therefore the magni�cation will be:

µ = detM =
1

detA
=

1

[(1− κ)2 − γ2]
. (1.22)

Time delay function The time delay function describes the time di�erence
between the arrival time of light that passes close to a lens and a light ray
that travels in a �at space-time. The function is

t(~θ, ~β) =
1 + zd
c

DdDs

Dds


∝ tgeom︷ ︸︸ ︷

1

2
(~θ − ~β)2−

∝ tgrav︷︸︸︷
ψ(~θ)

 = tgeom + tgrav. (1.23)

tgrav is the Shapiro time delay, mentioned previously. tgeom is due to the extra
path of the light with respect to the unlensed case. Take for example Figure
1.4: the real path of the light (S-A-O) is clearly longer than the unlensed one
(S-O). One could argue that, near the lens, the space-time being curved, the
path should be longer. That, though, is taken into account by the Shapiro
time delay. Furthermore, that is also why tgrav has a maximum in the direction
of the source, while tgeom has a minimum in the direction of the lens, as shown
in Figure 1.2.
Now, we know from eq. (1.27) that10

~∇θ

[
1

2
(~θ − ~β)2 − ψ

]
= 0. (1.24)

Therefore, according to Fermat's principle stating that rays of light traverse
the path of stationary travel time with respect to variations of the path, we
get an image when the condition ~∇θt(~θ) = 0 is satis�ed, as seen from Figure
1.2.

10 This comes from ~β = ~θ − ~α(~θ)⇒ (~θ − ~β)− ~α(~θ) = 0⇒ (~θ − ~β)− ~∇θψ = 0
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Figure 1.2: Time delay. The top panel shows tgeom. The delay is centred on the

source and it is greater as the position of the imagine (θ) "get away"
from the source. The medium panel is tgrav and it is greater as the light
pass closer to the lens. For more information see paragraph Time delay

function (1.2). The bottom panel is the combination of the two above.

Figure from Narayan and Bartelmann, 1996.

1.2.1 Point mass
Assuming that the lens is a point mass, its potential is:

φ(b, z) = − GM

(b2 + z2)1/2
, (1.25)

where b is the impact parameter of the unperturbed light, and z indicates
the direction along the unperturbed light path, with the origin A in the point
closest to the lens (see Figure 1.3). The de�ection angle is given by

α̂ =
2

c2

∫
+∞

−∞

∇2
⊥φ dz =

4GM(ξ)

c2ξ
, (1.26)

where the last equation is valid for circularly symmetric lenses. In the case

of a point mass lens, α̂ = 4GM
c2b
≡ 2Rs

b
. As seen from Figure 1.4, keeping in

mind that all the angles involved are small and the angles in the �gure are
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Figure 1.3: A gravitational lens con�guration. S is the source, M the lens and O
the observer. I is the position of the source as seen from the observer.

Figure from Narayan and Bartelmann, 1996.

exaggerated for clarity, we can write θDs = βDS− α̂Dds. In this way, we can
relate the position of the source and the image with

~β = ~θ − ~α(~θ) = θ − θ2
E

θ
, (1.27)

where ~α = Dds
Ds
α̂ and θE is the Einstein radius, de�ned as follows. Considering

a circularly symmetric lens with an arbitrary mass pro�le, we have:

β(θ) = θ − α(θ) (1.28)

and, since ~α = Dds
Ds
α̂ = Dds

Ds
4GMθ
c2θ

, where Dds,Dd and Ds are shown in Figure
1.4,

β(θ) = θ − Dds

DdDs

4GM(θ)

c2θ
. (1.29)

Because of the rotational symmetry of the lens, if the source is exactly behind
the lens, as seen from an observer far away from the lens and the source, then
β = 0 and the image would be a ring with a radius given by the Einstein
radius

θE =

[
4GM

c2

Dds

DdDs

]1/2

. (1.30)

The solutions to equation (1.27) for θ are

θ± =
1

2

(
β ±

√
β2 + 4θ2

E

)
. (1.31)

Gravitational lensing changes the apparent shape of the image while pre-
serving surface brightness, so the total �ux of the source changes. This can
be understood thinking about a magnifying glass. When we look at a screen
through a magnifying glass it appears brighter, but, obviously, the brightness



1.2. GRAVITATIONAL LENSING 11

Figure 1.4: Gravitational lens system. S is the source and O the observer. The

angular diameter distances between observer and lens, lens and source,

and observer and source are Dd, Dds, and Ds, respectively. I is the

position of the source as seen from the observer. Figure from Narayan

and Bartelmann, 1996.

of the screen itself does not change. The change in �ux is quanti�ed by the
magni�cation and in the case of circularly symmetric lens, it is µ = θ

β
dθ
dβ
. In

this equation, in the case of a point mass lens, we can use equation (1.27) for
β so the magni�cation will be:

µ± =

[
1−

(
θE
θ

)4
]−1

. (1.32)

From this equation we can see that for θ → θE, µ → ∞. That is not a
problem because in a realistic case the source is never a perfect point and we
need to take into account the wave optics approximation. This will change
the equation, giving a �nite µ.
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1.2.2 Singular Isothermal Sphere
A slightly more complicated lens model is the singular isothermal sphere

(SIS ). This is usually used when the lens is a galaxy, or a cluster of galaxies.
In my work, it is more likely that the lens is a galaxy than a cluster of
galaxies. In this model, the stars, which compose the galaxy, are assumed to
behave like particle of an ideal gas. Then, combining the equation of state of
the stars, p = ρkT

m
, and the equations of hydrostatic equilibrium,

p′

ρ
= −GM(r)

r2
, (1.33a)

M ′(r) = 4πr2ρ, (1.33b)

where a prime denotes a derivative with respect to r, assuming that the gas
composing the lens is isothermal (i.e., T , in the equation of state, is constant)
we get a singular isothermal sphere mass distribution:

ρ(r) =
σ2
v

2πG

1

r2
, (1.34)

where σv is the one-dimensional velocity dispersion of the stars, in this case,
constant11 across the galaxy. Usually, most of the light de�ection occurs in a
region of the order of the distance of the closest point of the light path (A in
Figure 1.4) to the lens. Most of the time, this distance is small compared to
lens-source and observer-lens distances. Therefore, the lens can be considered
thin and, projecting the density along the line-of-sight, we obtain the surface
mass density,

Σ(ξ) =
σ2
v

2G

1

ξ
. (1.35)

It follows that the projected mass within ξ is given by

M(ξ) = 2π

∫ ξ

0

Σ(ξ′)ξ′dξ′. (1.36)

From eq. (1.26), (1.35), and (1.36), we evaluate the de�ection angle in the

source plane, that is α̂ = 4π σ
2
v

c2
.

We have multiple images when the source lies within the Einstein radius. In
this case we have two solutions: θ± = β ± θE. The magni�cation is

µ± =
θ±
β

= 1± θE
β

=

(
1∓ θE

θ±

)−1

. (1.37)

11 Indeed, we have mσ2
v = kT , and, since T is constant, so is σv.
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Characteristics → E�ective Lensing De�ection Angle

Lens model ↓ Potential ψ(θ) α(θ)

Point mass Dds
DsDd

4GM
c2

ln |θ| Dds
DsDd

4GM
c2|θ|

Sis Dds
Ds

4πσ2

c2
|θ| Dds

Ds
4πσ2

c2

Table 1.1: In this table we can see the e�ective lensing potential ψ(θ) and the

de�ection angle α(θ) for both a point mass and a singular isothermal

sphere lens.

About Gravitational Lensing in Takahashi, 2016

In the paper by Takahashi, gravitational lensing is studied both for point
masses and SIS lenses. There is a clari�cation, though, to be done about
the time delay appearing in the article. The time delay for gravitational
lensing is de�ned with respect to the unlensed case and given by (see eq.
1.23):

∆t ∝
[

1

2
(~θ − ~β)2 − ψ(~θ)

]
. (1.38)

Usually, it is de�ned in order to have ∆t = 0 for the unlensed case,
∆t > 0 when the lensed signal arrives after the unlensed one and vice
versa for ∆t < 0. The latter case is rather unusual because it is due to
rare situations, like the presence of exotic matter or of an under dense
region along the path of the signal. Nonetheless, in the paper we �nd
several time delays whose value is negative, but this is not a problem.
In order to respect the de�nition above, the potential of the lens must
be normalized, i.e. its value at in�nity must be zero. That is not the
case in the paper, because none of the potentials are normalized. The
potential used in the paper can be see in Table 1.1. Furthermore, for the
singular isothermal sphere lens, one can never normalize the potential to
zero at in�nity since the mass diverges. Anyway, this is not a problem if
one keeps just in mind that the de�nition above are no longer valid (i.e.
∆t < 0 does not mean that the lensed signal arrives before the unlensed
one). Besides, what we actually measure is not the delay with respect to
the unlensed case (it would be impossible to measure), but the di�erent
arrival time for di�erent images, di�erent source positions or di�erent
frequencies. Therefore, again, negative time delay are not a problem.
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1.3 Geometrical Optics vs Wave Optics
Geometrical (or ray) optics and wave (or physics) optics are two ways to

study the propagation of waves, like EM waves but also, in our case, gravita-
tional waves. Further below there is a simple de�nition of those approaches,
but �rst we need to understand when to use one and when the other. There
are di�erent ways to de�ne the passage between the two "approximations":

• Takahashi and Nakamura, 2003 say "in the gravitational lensing of
gravitational waves, the wave optics should be used instead of the ge-
ometrical optics when the wavelength λ of the gravitational waves is
longer than the Schwarzschild radius of the lens mass" (see also Naka-
mura and Deguchi, 1999 )

• in Schneider, Ehlers, and Falco, 1992 we �nd that "when the wavelength
is larger than the path di�erence between the multiple images, the
geometrical optics approximation breaks down".

Actually, we can see that those de�nition are the same. That is because the
second de�nition can be written as: if λ > ∆Dim, where λ is the wavelength
and ∆Dim is the di�erence between the path of the images, then we should
use wave optics. ∆Dim is of course proportional to the time di�erence ∆Tim of
the images, in particular: ∆Tim = ∆Dim/c. It is also true that ∆Tim ∼ Ddα

2

c

and α ∼ d
Dd
, where d is the distance between two images. Therefore we have:

∆Dim = ∆Tim · c ∼
Ddα

2

c
c ∼ dα =

2d

b
Rs ∼ Rs (1.39)

Where we also used the de�nition of α as written right below eq. (1.26). From
eq. (1.39) we can infer that λ > ∆Dim is the same as λ > Rs.
In the article by Takahashi, 2016, the condition is also seen di�erently. That
is, let us �gure out what is the value of the mass of a lens that divides
geometrical from wave optics, with respect to the wavelength of the grav-
itational wave (for the EM waves, we are always in the geometrical optics
approximation). Therefore,

λ ≥ Rs =
2GM

c2
≈ GM

c2
⇒M ≤ c2

G
λ ' 6, 742·10−4M�

(
λ

m

)
≈ 105M�

(
f

Hz

)−1

(1.40)
and

M ≤ 105M�

(
f

Hz

)−1

. (1.41)
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For example, for a solar mass lens, the "border" wavelength would be λ ≈ 3
km⇒ ν ≈ 105 Hz. For a galaxy, M = 1011 M�, λ ≈ 1.47 ·1014 m⇒ ν ≈ 10−6

Hz. This means that for larger λ (or smaller ν) than the values just found,
wave optics must be used. For ν ≈ 10−8 Hz⇒ M < 1013 M�. Which means
that, for lenses with mass smaller than 1013 M�, wave optics must be used.
These examples are not casual, indeed M = 1011 M� is the average mass of
a galaxy that could act as lens for my study, while ν ≈ 10−8 Hz is a typical
GW frequency measured by Pulsar Timing Arrays (PTAs, see chapter 2.2).
We can see that, for the study of this thesis, wave optics must be applied to
study GWs.

1.3.1 Geometrical Optics
Geometrical optics, or ray optics, describes light propagation in terms of

rays. The ray in geometric optics is an abstraction, or instrument, useful in
approximating the paths along which light propagates in certain classes of
circumstances.
The simplifying assumptions of geometrical optics include that light rays:
i) propagate in rectilinear paths as they travel in a homogeneous medium;
ii) bend, and in particular circumstances may split in two, at the interface
between two dissimilar media; iii) follow curved paths in a medium in which
the refractive index changes may be absorbed or re�ected.
Geometrical optics does not account for certain optical e�ects such as di�rac-
tion and interference. This simpli�cation is useful in practice; it is an excellent
approximation when the wavelength is small compared to the size of struc-
tures with which the light interacts. The techniques are particularly useful
in describing geometrical aspects of imaging, including optical aberrations.

1.3.2 Wave Optics
Wave (or physical) optics is the name of an approximation commonly

used in optics, electrical engineering and applied physics. In this context,
it is an intermediate method between geometric optics, which ignores wave
e�ects, and full wave electromagnetism, which is a precise theory. The word
"physical" means that it is more physical than geometric or ray optics and
not that it is an exact physical theory. This approximation consists of using
ray optics to estimate the �eld on a surface and then integrating that �eld
over the surface to calculate the transmitted or scattered �eld. This resembles
the Born approximation, in that the details of the problem are treated as a
perturbation.
In optics, it is a standard way of estimating di�raction e�ects. In radio, this
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approximation is used to estimate some e�ects that resemble optical e�ects.
It models several interference, di�raction and polarization e�ects, but not
the dependence of di�raction on polarization. Since it is a high-frequency
approximation, it is often more accurate in optics than for radio.
In optics, it typically consists of integrating ray-estimated �eld over a lens,
mirror or aperture to calculate the transmitted or scattered �eld.



Chapter 2

Gravitational Wave Detection

As mentioned in the introduction, several detectors for gravitational waves
are under construction, and a couple of them are already in use. Most of
them work through laser interferometry (e.g., LIGO, VIRGO, eLISA). The
frequency range for those detectors is between 10−5 to 104 Hz (see Figure
2.1). As said before, Takahashi, 2016 worked in this range. In this work, I
will study gravitational waves whose wavelength is much larger, of the order
of 10−8 Hz (= 10 nHz, that is λ ∼ 1 pc or period T∼ 1 year), mostly coming
from super massive binary black-holes (SMBBHs). Therefore, we need di�er-
ent detectors.
The great thing about astronomy is that, to accomplish its research, since
most of the time it can not make laboratories experiments, it is forced to use
what the universe o�ers. In this case, pulsars.

2.1 Pulsar
A pulsar is a neutron star in one of the latest stages in the life of a star.

It is a very compact object, its mass is of the order of 1 M� while having
a radius of ∼ 10 Km. It also has a very intense magnetic �eld, B ∼ 1012

G (while a star usually has B ∼ 102−3 G). Considering the pulsar as an
advanced stage of a star, the value of the magnetic �eld comes from the
conservation of magnetic �ux: BiR

2
i = BfR

2
f , where f corresponds to the

pulsar and i to its progenitor. Therefore,

Bf = Bi

(
Ri

Rf

)2

≈ 100

(
106

10

)2

≈ 1012 G. (2.1)

The most important characteristics of these objects are their beamed emis-
sion and their short rotation period. Simplifying, the latter can be deduced as

17
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Figure 2.1: Spectrum of potentially detectable GW sources and sensitivity curves

for PTA systems, the space-based laser interferometer LISA and the

ground-based laser interferometer LIGO. Figure from Manchester,

2010.

in eq. (2.1), recalling the conservation of angular momentum, giving a period
of the order of seconds1. The fast rotation combined with the beamed emis-
sion give the peculiar characteristic of the observed pulse. The wavelength of
the emission could vary over a large range of wavelengths, but in particular
they emit in the radio range. Of course, a pulsar can only be detected if, at
any time of the rotation, the beamed emission is pointed to the earth.
A part from usual pulsars, which have periods between 0.1 and 5 seconds,
there is another type of pulsar, the milliseconds pulsars (MSPs). These have
periods of milliseconds (from 2 to 50 ms), and are also called recycled pulsar.
This is because they were old silent pulsars with long periods which, thanks
to an evolving companion star, gained material and, most of all, angular mo-

1 Actually, doing the calculation, the period is ∼ 10−5 s. Then, because of the huge
magnetic �eld, the star is slowed down quickly.
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mentum. At the same time, this process reduces the e�ective magnetic �eld
of the pulsar, which is responsible for the emission. Nonetheless, thanks to
its big spin-rate, the emission beam is reactivated.
Because of their short period, their compactness and small magnetic �eld2

that give a high stability to the star and to its period, and their beamed
emission, MSPs are extremely precise clocks and, for this, are useful objects
for astronomy. In my case, for the detection of GWs.

2.2 Pulsar Timing Array
The technique used to detect GW, through MSPs, is called Pulsar Tim-

ing Array (PTA). It consists of monitoring the observed beam frequency of
several MSPs over a long period of time. The aim is to reconstruct the pulse
of the star as precisely as possible. The rotational phase of the pulsar, at
time t, is

φ(t) = φ(t0) + f(t− t0) +
1

2
ḟ(t− t0)2 + ... , (2.2)

where f = dφ/dt is the rotation frequency, and ḟ is the �rst time derivative
of f , and both are the unknowns of the problem. What is done, in practice,
is to take the time of arrival (TOA) of a pulsar as measured at the telescope
and to convert it in an inertial reference frame with respect to the pulsar.
Usually, the rest frame is the barycentre of the solar system. Therefore,

t = ttopo− ttopo,0 +∆clock−∆DM +∆R�+∆E�+∆S�+∆R+∆E +∆S, (2.3)

where topo indicates the topocentric frame (i.e. the observer frame), ∆clock

accounts for di�erences between the observatory clock and a terrestrial time
standard, ∆DM (where DM stays for dispersion measure) is the correction
due to the inter stellar medium (ISM), ∆R,E,S are respectively Römer delay
that accounts for light travel time across an orbit, Einstein delay, which takes
into account time dilation due to orbital motion and the gravity of other bod-
ies, and Shapiro delay. The � indicates quantities arising from Sun and other
bodies in the solar system, while the others are referred to the Earth. It is
good to remind that some of these quantities are time dependent, like for
example ∆DM . Therefore, this work has to be really precise and continuous.
Once it is done, we can build a timing model, to reconstruct the rotational
phase of the pulsar [eq. (2.2)], at any given time. At this point, the observed
TOA is compared to the prediction made by the model just presented. The

2 The main cause of the slowdown, in the pulsar, is the strong magnatic �eld.
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di�erence between these two quantities is called timing residual. This is usu-
ally di�erent from zero, despite the correction that have been made, and it is
due to di�erent noises. The noise is called red or white, depending on whether
its power spectral density rises with frequency or stay �at, respectively.White
noise is due to radiometer noise, pulse jitter, and interstellar oscillation, while
timing noise, dispersion measure (DM) variation, and GW cause red noise.
Most of these noises can be reduced, or even deleted, increasing observing
and integration time, increasing radio bandwidth, observing with larger tele-
scopes, and by using low-noise receivers and ampli�ers3. Assuming all the
correction have been done correctly and all noise been reduced as much as
possible, what is left, in term of timing residual, is possibly due to GWs. As
in laser interferometry detectors, the wave passing between the pulsar and
the Earth, warps space-time, inducing a modulation in the TOA with respect
to the model4.
The main reasons to use a PTA are that one (i) can increase signal-to-noise
ratio of the GW in the timing residual, and (ii) compare timing residual
from di�erent pulsars to discriminate between GW signal and other noises.
Indeed, because of the quadripolar nature of GWs, the signal we are look-
ing for contains unique characteristics. In particular, as seen in Figure 2.2,
it gives a unique correlation between timing residual from di�erent pulsars,
distributed in the sky. The �gure shows the correlation, which depends only
on the angle separation between the pulsars, for a stochastic and isotropic
signal of GW, i.e. a Gravitational Wave Background (GWB). The trend of
the plot will be clear when, in chapter 3.1, I will explain how the time resid-
ual takes place from GWs. In particular, eq. (3.3), will show how this time
residual depends on the relative position of source-pulsar-Earth. Therefore,
in the case of an isotropic background radiation, the value will depend only
on the relative positions of the pulsars. The maximum correlation is 0.5 and
not 1 because the pulsar terms, which will be presented in chapter 3.1, are
never correlated. For a single detection, the problem is not so simple, and
other variables are to be considered, making a single detection less probable
than a GWB detection5.
On the other hand, an error in the transformation between the observa-
tory clock and a terrestrial time standard [∆clock in eq. (2.3)] would have a
monopolar signature, and an error in ∆S� would have a dipolar signature.
Therefore, a pulsar timing array is needed not just to monitor many di�erent
pulsars and to have more data, but also because of this unique correlation.

3 See Manchester, 2010 for more detail about noises.
4 For further explanation see chapter 3.1.
5 For further investigation see Rosado, Sesana, and Gair, 2015 and chapter 3.1.
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Figure 2.2: The Hellings-Downs curve showing the expected angular correlation

between pulsar timing residuals as a function of angular separation. It

was �rst explained by Hellings and Downs, 1983. Figure from Lynch,

2015.

Besides, by studying many pulsars, it will be possible to reconstruct the po-
sition in the sky of the source. For example, Anholm et al., 2009, through
simulations, examined how well the PPTA (Parkes Pulsar Timing Array, see
next paragraph) should constrain the position of a GW source, see Figure
2.3.

2.2.1 Pulsar Timing Array Collaborations
There are currently three major PTA collaborations.

- The European Pulsar Timing Array6 (EPTA) uses �ve telescopes to
monitor northern sky pulsars. The 100 m E�elsberg Radio Telescope
in Germany, the 76 m Lovell Telescope in England, the 64 m Sardinia
Radio Telescope in Italy, the Westerbork Synthesis Radio Telescope
(made up of 14, 25 m dishes) in the Netherlands, and the Nancay
Radio Telescope in France, a Kraus-type design consisting of a �at
primary and cylindrical secondary surface. The EPTA collaboration has
categorised 18 pulsars as Priority 1, meaning that they o�er the highest
timing precision using their telescopes. They are the most promising
candidates for gravitational wave detection.

6 http://www.epta.eu.org/

http://www.epta.eu.org/
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Figure 2.3: Localisation of a source of GWs in the northern sky (upper) and in

the southern sky (lower) using simulated data for the pulsars observed

by the PPTA. The actual assumed source positions are 06h, 45◦ and
18h, −45◦. The position is better constrained for the southern hemi-

sphere because the PPTA pulsars are more numerous in that part of

the sky. Figure from Anholm et al., 2009.

- The North American Nanohertz Observatory for Gravitational Waves7

(NANOGrav) is a collaboration between USA and Canada. They use
the 100 m Green Bank Telescope in the US and the 305 m Arecibo
Observatory in Puerto Rico, to time 42 MSPs.

- The Parkes Pulsar Timing Array8 (PPTA) uses the 64 m Parkes Ob-
servatory in Australia.

These three collaborations also work together forming the International Pul-

7 http://nanograv.org/
8 http://www.atnf.csiro.au/research/pulsar/ppta/

http://nanograv.org/
http://www.atnf.csiro.au/research/pulsar/ppta/
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Figure 2.4: Sky-map, in equatorial coordinate system, of the pulsars included in the
Parkes Pulsar Timing Array sample (large open circles), the European

Pulsar Timing Array (open boxes), NANOGrav (solid boxes) and all

known pulsars with P < 20 ms. Figure from Hobbs, 2012.

sar Timing Array9 (IPTA). Here, data coming from all the telescopes of the
three collaborations are studied together to achieve quicker the goal of de-
tecting GWs.
Figure 2.4 shows the distribution in the sky of the MSPs known today. We
can see that most of the pulsars are found in the southern hemisphere. That
is why the IPTA is important. Besides, among others, this is one of the reason
why the Square Kilometre Array (SKA) is being built in two countries in the
south hemisphere (see below paragraph 2.2.2 about SKA). A part from GW
detections, PTA are used to develop a pulsar-based time standard (indepen-
dent of terrestrial time standards) and to re�ne Solar system ephemerides.
That is because errors linked to the Earth based time standard and in the
models of the Solar System induce a monopolar and dipolar residual in the
TOA, respectively, and so are well detectable and correctable.

2.2.2 Latest and future results
In 1974, observations of the energy loss of the binary pulsar PSR 1913+16

were attributed to the emission of gravitational waves (Taylor and Hulse,
Nobel prize 1993). The observation agreed with the theoretical expectation
of general relativity to better than 0.1%. That was the �rst proof of the
existence of GW and it was due to pulsars, even though the method was
di�erent from the one explained above.
PTA is almost a newborn technique and, most of all, it is time demanding.

9 http://www.ipta4gw.org/

http://www.ipta4gw.org/
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Therefore, results are not so high-sounding, yet. Nonetheless, data collected
so far are used to:

• improve noise detection and correction: as we saw previously, the de-
tection of a GW signal is a very precise work, where one has to delete or
minimize all other noises and eventually come up with a timing resid-
ual of few µs over an observation of several years (e.g., see Tab.4 in
Verbiest et al., 2016);

• re�ne pulsar and GW source models: we understood that having the
best pulsar model is a fundamental starting point for these investiga-
tion. Moreover, we also want to know what to look for. For this reason
modelling properly SMBBHs or any other GW source is a key step to
the whole work10;

• put constrains to

a) Astrophysical Gravitational Wave Background (A-GWB). This
GWB is the expected background of GWs emitted by all SMBBHs
in the universe. See right panel of Figure 2.5 and below for further
explanation;

b) cosmic (super)string tension. Cosmic strings are one-dimensional
topological defects, relic of an early stage of the Universe, when
it was more symmetric. They were created through a spontaneous
mechanism of symmetry breaking, during the numerous phase
transitions of the early Universe. Two cosmic strings may interact
with a certain probability, and give birth to loops. Cosmic string
loops oscillate and decay emitting all of their energy in various
forms of radiation, with the dominant form thought to be GWs.
PTA gives an upper limits on the linear energy density of this
cosmic (super)string network;

c) Relic Gravitational Waves Background (R-GWB). Quantum �uc-
tuations of the gravitational �eld in the early Universe, ampli�ed
by an in�ationary phase, are expected to produce a stochastic relic
GWB.

The A-GWB is particularly important because it gives information about
SMBBHs and GWs with frequencies of the order of nHz. Indeed, those are
the sources that I will consider for my study. For example, Lentati, 2015 show
how current data set a limit on the number density of SMBHBs mergers per

10 For more on SMBBH see Chapter 3.
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Figure 2.5: Comparison between the expected GWB amplitude from a simulated

cosmological population of SMBHBs and the 95 per cent upper limit

obtained with PTA experiment. Shaded areas represent the central 68,

95, 99.7 and 100 per cent con�dence interval of the predicted signal

according to modelling, whereas the red curve is the 95 per cent upper

limit presented in the paper by Lentati, 2015.

unit redshift and unit chirp mass across cosmic history, even though this
limit is still weak. As shown in Figure 2.5, the red line is the limit to the
GW amplitude in the frequency range of nHz (i.e., there can not be GW
with amplitudes greater than that limit), given by observation from EPTA.
Shaded regions are the con�dence intervals for the expected amplitude, from
simulations. We can see that we still are not able to detect the expected
GWB, but we are quite close to it. As mentioned before (Rosado, Sesana,
and Gair, 2015), detecting a single GW is di�erent and we can not set any
limit so far to their detection.

We can say that PTA is almost at its beginning and both instruments and
data processing are improving quickly. For these reasons, there is optimism
about making a "real" detection, in a couple of years. A game changer in
this �eld will be the Square Kilometre Array (SKA).
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Square Kilometre Array

The Square Kilometre Array11 is an international project which is building
what is going to be the biggest and most sensitive radio telescope in the
world. Ten countries (among which Italy and Sweden) participate in this
collaboration. It is built in two phases, called SKA and SKA2. The �rst
stage, whose building has begun in April, 2017, will work at approximatively
10% of the �nal total power of the observatory and it should be operative in
2020. The second and �nal stage, SKA2, should be �nished and working by
the end of the 2020s. When complete, the SKA will consist of two di�erent
observatories, in Australia and in South Africa plus other countries in Africa.
Each observatory will have an extended array (with thousands of antennae)
of three di�erent types of antennae distributed over a distance of more than
3000 km. This will give the SKA a sensitivity corresponding to a telescope
with a square kilometre mirror, and (i) a frequency range between 50 MHz
(6 m) and 14 GHz (0.02 m), (ii) the highest sensitivity for a radio telescope
(more than 50 times more sensitive than the best current radio telescopes)
and (iii) a wide �eld of view12.
This project will help deeply the research in many di�erent aspects. For what
concerns the work of this thesis, it will increase the number of known pulsars
(SKA2 potentially could detect all galactic radio emitting pulsars in the
SKA sky, beaming in our direction) and study them with an unprecedented
precision, as well as increasing data quality of the already known pulsars.
Furthermore, with respect to Figure 2.3, it will also reduce the uncertainties
in the position of the GW sources in the sky. Without any doubt, this will
allow us to study GWs in depth and with a precision much higher than
current PTAs (see Figure 2.1).

11 www.skatelescope.org and Lazio, 2009.
12 Shao, 2015

www.skatelescope.org


Chapter 3

Super Massive Binary Black Holes

In this section I present the characteristics of the GWs detected by PTAs
just shown, the possible sources of these GWs, black-holes (BH), and the
possible EM signal from these.
Black-holes are the most compact and relativistic object in Universe. A
BH density is so dense that nothing within its Schwarzschild radius (rS =
2GM/c2) can escape it1, not even light. From observations, we know that
there exist two types of BH: stellar BH and super massive BH (SMBH). Other
two types of BH, intermediate mass BH and micro BH could exist but, so far,
have not observed. Micro BH are thought to be created in the very �rst phase
of a high-dense Universe, while the nature of intermediate mass BH, which
have masses between 102 to 104−5 M�, is still questioned because, to date,
there are no direct evidence of them and their birth is debated. Stellar BH is
the last stage of a star with a mass above the Tolman�Oppenheimer�Volko�
(TOV) limit. Above this limit, the collapse of the star can not be stopped by
its matter content and, therefore, it becomes a BH. Stellar BHs have masses
of about 10 M�. Super massive BHs have masses between 105 and 1010 M�.
They are believed to be present in the core of every massive galaxy2. There
are currently many models which explain the existence of this type of BH in
the core of galaxies. The main point for my work is that their presence in
the Universe is widely proved.
Super massive binary black holes (SMBBHs), then, are due mainly to galax-
ies mergers. Indeed, SMBHs in the core of these galaxies may create a binary
system, live separately in an in-spiral phase and eventually merge together.
This process is very prolonged and could lasts millions of years. A useful
summary of the evolution of these kind of systems can be found in chapter 3

1 This is true for non rotating, not charged BH, also called Schwarzschild BH.
2 Kormendy and Richstone, 1995.
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of Tanaka and Haiman, 2013, and I give a short summary in chapter 3.2. The
number of these binary systems is unknown. There are some articles in liter-
ature, which try to verify whether or not there could be actually detectable
systems. Meaning not just that they exist in the Universe, but also that
there are some of them su�ciently close and/or very bright in GW signal to
emerge from the background radiation. In the work by Sesana, Vecchio, and
Volonteri, 2009, it is said that, depending on massive black holes population
models, there should be, on average, at least one resolvable source producing
a timing residual in the range of PTAs.

3.1 Characteristics of the emitted gravitational sig-
nal

Not introducing further complications, the frequency emitted by these
SMBBHs can be calculated as explained above in paragraph 1.1.2, and turns
out to be twice the orbital frequency. Obviously, due to this emission, the
system lose energy, evolve and enters an in-spiral phase, where the main
energy loss by the system is due to GWs emission. This phase terminates at
the last stable orbit (LSO). The frequency (or period) at this LSO is

fLSO = 4.4 · 10−6M−1
9 Hz

⇓
TLSO ≈ 3·M9 days,

(3.1)

where M9 is the total mass of the two SMBHs in units of 109 M�. Therefore,
we are at the border of the PTA sensitivity for the total mass of the binary
M ≈ 1010 M�, while for lower masses, the GWs at LSO would be not de-
tectable for current PTAs. For the in-spiral phase, PTA will be capable of
detecting GWs coming from binaries with m1,2 ≥ 108 M�

3, where m1,2 are
the masses of the SMBHs. The changing rate of the frequency in the in-spiral
phase is

ḟ =
95

6
π8/3M5/3f 11/3, (3.2)

whereM = m
3/5
1 m

3/5
2 /(m1 +m2)1/5, is called the chirp mass and determines

the leading order amplitude and frequency evolution of GWs. This equa-
tion will be useful later on [see eq. (3.6)], when I will talk about how this
change in frequency with time could a�ect observations. There, I will give

3 Further details in Sesana and Vecchio, 2010
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some numerical examples as well. As showed earlier, GWs induce a pertur-
bation on space-time, hαβ(t). If we consider a pulsar emitting a radio pulse
with frequency ν0, this perturbation gives birth to, for an observer at Earth,
a frequency shift on the emitted frequency of the pulsar, according to the
characteristic two-pulse function

z(t, Ω̄) ≡ ν(t)− ν0

ν0

=
1

2

p̄αp̄β

1 + p̄αΩ̄α

∆hαβ(t, Ω̄), (3.3)

where ν(t) is the pulsar frequency received on Earth, Ω̄ is the unity vector
parallel to the direction of the propagation of the GW, p̄ is the unity vec-
tor indicating the propagation direction of radio waves from the pulsar and
∆hαβ(t) ≡ hαβ(tp, Ω̄)− hαβ(t, Ω̄) is the metric perturbation di�erence at the
pulsar and at the observer, respectively (see Figure 3.1). The observable, as
shown earlier, is the time residual, given by

r(t) =

∫ t

0

dt′z(t′, Ω̄). (3.4)

The frequency shift (eq. [3.3)] depends on ∆hαβ(t), which exhibits the dif-
ferent metric perturbations at the pulsar and the Earth. Therefore, for any
kind of GW, we expect to have, for every pulsar, two di�erent terms building
the timing residual. One, the Earth term, is due to GWs passing through
the Earth, and the other, the pulsar term, is due to GWs at the pulsar. For
a given source, the Earth term is the same for all the pulsars in the array
and it depends on seven parameters. On the other hand, the pulsar term is
di�erent for every pulsar and it depends also on the distance of the pulsar
from Earth, which, for the moment, is often poorly constrained. Of course,
for an isotropic radiation (i.e. R-GWB and A-GWB), these two terms are
the same, or the di�erence between them is really small. For a single source,
we expect to have di�erent frequencies coming from the pulsar term of dif-
ferent pulsars. This is because GWs from Earth and pulsar terms, observed
at the same time, must have left the source at di�erent times4 (see Figure
3.1) and we expect the emitted frequency to evolve with time [see eq. (3.2)].
This time interval is given by source-pulsar-observer relative position and
the Earth-pulsar distance. Indeed, the time span between the time the met-
ric perturbation5 detected through the pulsar term was emitted (Tpt) and the

4 To picture better the pulsar term, one can think that it is as, for an EM signal, we
have a mirror array in the sky which re�ects the light coming from sources in the Universe.
These mirrors, being at distances of 1-10 kpc, would show us the sources at di�erent ages.

5 I use here the word perturbation in reference to ∆hαβ(t, Ω̄) in eq. (3.3). Given the
wavelength of the radiation we are taking into account here, this is a more appropriate
term than just wave.
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Figure 3.1: Schematic example of the system composed by a GW source, S, a PTA

with three pulsars, P1, P2 and P3, and the Earth, O. Notice that the

angle between Ω̄o and Ω̄P is exaggerated in the �gure. Usually it is very

small because the distance pulsar-Earth (∼ 1−10 kpc) is much smaller

than the distance source-Earth (∼ 102−3 Mpc). For more details see

the text.

time the one of the earth term was emitted (TEt) can be quanti�ed as6

TEt − Tpt = ∆T =
d

c
(1− cos θ), (3.5)

where d is the Earth-pulsar distance, and θ is the angle between the source-
Earth and the pulsar-Earth directions, see Figure 3.1. It can be shown (Sesana
and Vecchio, 2010), that these two di�erent terms should be observable and
distinguishable. The change in time of the GW frequency follows from eq.
(3.2) and can be further appreciated by multiplying that equation with the
time interval,

∆f = ḟ∆T =
95

6
π8/3M5/3f 11/3∆T ≈

≈ 0.02 M5/3
9 f

11/3
50 ∆T nHz,

(3.6)

whereM9 =M/(109 M�), f50 = f/(50 nHz) and ∆T is in year. This means
that, for example, for a GW of f = 10−7 Hz and a source with two BHs

6 Notice that TEt ≥ Tpt, i.e. TEt always follows Tpt.
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with m1,2 = 108 M�, ∆f ≈ 0.04 nHz for ∆T = 10 yrs. For ∆T = 3 · 104

yrs7, ∆f ≈ 120 nHz. This means that in a time interval of the order of 10
years, that is the time span of current observations, the frequency emitted
can be consider constant. This is no longer true if we consider the radiation
registered with the pulsar term, with respect to the Earth term.
One thing to keep in mind is that the Earth term will always be better
determined because one can use all pulsars in the array to improve the S/N
ratio. For this reason, we will have to wait longer, for very precise data, to
work also on the pulsar terms, and that is also why, in most of current papers,
the pulsar term is often ignored.

3.2 Electromagnetic signal
In order to picture what could be the EM counterparts of a SMBBH,

one has to understand how the system evolve and reach the detectable GWs
emission phase. Many articles in literature try to summarize this process,
among which, for example, Tanaka and Haiman, 2013 and McKernan et al.,
2013 (and citations therein to further details), but they always stress the fact
that there are still lots of uncertainties in modelling these stages of SMBHs
mergers. This is because the complexity of the system, especially in the �nal
detectable GWs emission phase, would take too long to be properly modelled
in a 3D simulation, and therefore, most of studies uses either simpli�ed mod-
els or 1D calculations. Furthermore, observational data, as we will see later
on, are still sparse.
In the process of a galaxy merger that leads to SMBBHs, stars and gas are
compressed to the central region. After the �rst stage of star scattering, the
system is compact enough for the binary to exchange momentum with the
surrounding gas, and starts accelerating. The gas is expected to form a cir-
cumbinary disk (red disk in Figure 3.2). This interaction, between the binary
system and the disk, align the two, so that they become prograde and copla-
nar. Then, the system is in a con�guration very similar to an active galactic
nucleus (AGN) and, therefore, we expect EM emission in the form of AGN.
However, the central source being a binary and not a single BH, we expect
some di�erences in the con�guration of the system and, as a consequence of
that, in the EM signal. In particular, there might be some time-dependent
variation in the emitted radiation that will be very useful for my study.
One thing to keep in mind is that, in order to actually create a SMBBH
system whose GW emission is observable via PTA, the masses of the two

7 I consider here a distance of pulsars of about 10 kpc and θ = 90◦. For this distance,
the value of ∆f should be considered a maximum limit.
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Figure 3.2: Circumbinary disk scenario in which binary torques create a low density

region in the center of the disk. The accretion onto the binary members

is shown by the arrows. For more details see the text. Figure from

Bogdanovic et al., 2011.

SMBHs have to be comparable, i.e. 0.01 . q < 1, where q = m2/m1 is the
mass fraction with m2 ≤ m1. If that is not the case, the smaller galaxy would
be tidally stripped and the SMBH inside it would never reach the center of
the new forming galaxy8. It follows that the secondary (i.e. the SMBH with
lower mass) will create an annular gap about its orbital path9. Eventually,
the gas interior to the secondary's orbit will fall into the central SMBH and
a cavity will form, as shown in Figure 3.2. As gas continues to accrete, since
it cannot enter the central region and is pushed away by the binary's tidal
torque, a dam forms around the cavity (at radius ∼ 2a, where a is the semi-
major axis). If the dam is porous, as it usually seems to be, circumbinary
gas leaks periodically into the cavity and could create a disk around one or
both SMBHs. This is shown by the arrows and blue disks in Figure 3.2. It is
still under debate how long these inner disks live. It is reasonable to think,
though, that they are stable and exist until the coalescence of the BHs (e.g.
see Kulkarni and Loeb, 2016). This con�guration is expected to give place to
particular EM signals.

i) Because the central region of an AGN is responsible for the most en-

8 Other articles, like Bogdanovi¢, 2015, set the lower limit for q ≈ 0.1. As a general rule
in this chapter, given the high uncertainties on the subject, it is better always to doubt
any such numerical example or constraint.

9 This con�guration is similar to the one of a hot Jupiter opening a gap in a proto-
planetary disk.
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ergetic thermal photons, the presence of a cavity in that region would
cut the spectrum at the highest energies and therefore it will lack of
the UV and X-ray part. The peak of the SED is expected to be at
lower frequencies, and it can be approximated using the equation from
Tanaka and Haiman, 2013

νpeak ∼ 1015M
1/4
9 ṁ1/4

(
P

1 yr

)−1/2

Hz ≈ 3.76 · 1014 ṁ1/4 Hz, (3.7)

where ṁ is the accretion disk rate outside the cavity in units of the crit-
ical rate corresponding to the Eddington luminosity, and the last equal-
ity is true forM = 2·109 M� and P = 10 years. For Eddington ratios of
0.2 and 0.01 (the value assumed in the paper), ν ≈ 2.5·1014 and 1.2·1014

Hz, respectively. The usual value for a singular SMBH is ν ∼ 1016−17

Hz. This equation could be used, knowing ν and P from observation10,
to �nd ṁ ·Mtot and therefore constrain these two parameters. If we also
know the total mass, then we could calculate ṁ, and understand the
geometry of the system better. In Figure 3.3, we can see an example of
a possible SED distribution.

ii) As mentioned previously, the walls of the cavity are expected to be
porous and therefore gas can fall into the cavity and create an accre-
tion disk around one or both the SMBHs. Furthermore, these streams
may shock the BHs disks and, for eccentric binaries, would give peri-
odic �ares according to the binary period or with its harmonics. Of the
three unique signatures we expect from a SMBBH, this is the most dif-
�cult to model and understand. That is because many variables enter
the problem, as the total mass, the ratio of the masses, the eccentricity
and period of the binary system, how gas accumulate at the dam in the
circumbinary disk and how it leaks in the cavity, how mini-disks form
around the SMBHs and how they develop. For this reason, the subject
is being studied intensely nowadays but the results are not yet always
in agreement. For example, Shi and Krolik, 2016 and Farris et al., 2014
reach di�erent conclusions about the luminosity of these �ares, the for-
mer saying they are quite irrelevant, in contrast with what the latter
concludes. This is why I will not use this signature further in my thesis.

iii) The last, and most important feature, is due to Doppler e�ects on the
emission line coming from the emitting disks, circumbinary and around

10 We will see later how we can measure P from other characteristic features.
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Figure 3.3: Estimated SEDs of circumbinary disks around a SMBH binary with

total mass M = 109 M� and mass ratio m1 : m2 = 4 : 1. The dotted
curves show the emission from the circumbinary disk truncated by a

central cavity (bump at ν ∼ 1015 Hz) and from the circumsecondary

disk (higher-frequency bump). The solid curves show the composite

spectrum, and the dashed curve shows, for comparison, the SED of

an Eddington accretion disk around a single SMBH of the same total

mass. Figure from Tanaka and Haiman, 2013.

one or both the BHs. The line we consider is the Kα line of the Fe, be-
cause it is one of the strongest and most studied.
If there were no disks around the central BHs, the line pro�le would be
constant with time and look like the black line on Figure 3.4. This pro-
�le depends on the emissivity characteristic of the circumbinary disk,
that are listed in the paper where the �gure was taken (McKernan et
al., 2013). If these parameters change, then, also the line pro�le may
change. However, if one of the BHs has an accretion disk, its Fe Kα
line pro�le will change with time (for any observer a part from one ob-
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serving the system face-on11). This change in time will depend only on
the orbital period of the binary, while the �ux of the line also depends
on the mass ratio q, the distance between the BHs and the character-
istics of the disk. In Figure 3.4, the line pro�le at maximum red-shift
(red line) and blue-shift (blue line) are shown. The line is expected to
change its shape from one to another in half the period of the binary.
Therefore, from a prolonged observation, we could measure the period
of the binary. In this case, though, the mass ratio is supposed to be

Figure 3.4: The black curve shows the Fe Kα emission line from the circumbinary

disk (55 - 100 rg) plus a weak secondary broad component (10% of the

intensity of the full disk pro�le) due to an accretion disk around the

secondary black hole, located at 30 Rg, centered on the line centroid

energy (6.40 keV). The red curve shows the e�ect of shifting the cen-

troid of the weak secondary component redward to 5.2 keV. The blue

curve shows the e�ect of shifting the centroid of the weak secondary

component blue-ward to 7.3 keV. The curves in both panels are binned

at approximately the energy resolution (∼ 7 eV) expected for Astro-H.

Figure from Tanaka and Haiman, 2013.

rather low, q ≈ 0.01. If the two BHs are of comparable mass, as we

11 That is, for an observer who sees the velocity of the BHs along the line of sight equal
to zero.
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expect for binary system emitting observable GWs, there is no reason
to believe only one BH to have an accretion disk. Therefore, we expect
the horns of the line to "pulse" over half the orbital period, since the
evolution in time of the two accretion disks is, in principle, the same
but in opposition. In any case, though, whether the mass ratio is 1 or
0.01, the time-dependent con�guration of the line is expected to return
on its "starting" con�guration after half a period. For this reason, mon-
itoring this change in time is a powerful tool.
Figure 3.5 shows a simulation done by McKernan et al., 2013. They sim-
ulated a 350 ks (≈ 4 days) observation with XMM-Newton EPIC pn of
an AGN at z = 0.01, with a 2-10 keV countrate of 3.5×10−11 erg/cm2/s.
Simulated data are in black, and they show a Fe Kα line of the sec-
ondary disk centred at 7.3 keV, that is blue-shifted. The solid blue line
corresponds to the best �t to these data, while the red one is the best
�t for a red-shifted line, at 5.2 keV. Data in the latter case are not pre-
sented for clarity. We can see that disentangling the circumbinary disk
from the secondary disk may be di�cult to realize, but repeated ob-
servation with the new generation telescopes may allow us to actually
observe this feature well enough, as I will prove in the next paragraph.

3.2.1 Detectability of EM counterparts
Because of the many uncertainties and the big interest around system

emitting both gravitational and EM signal, this �eld has been studied deeply
in the last years. Many methods to study such system are being considered
and modelled, and I gave a summary of the main ones12. It is now of big
importance to understand which one of these features is currently measurable
and observed, and what can we expect from future observation.
The main features I am interested in for my work is the last one described
in the previous chapter. Again, the detectability of this time-dependent line
shape depends on many di�erent characteristic of the system (Sesana et al.,
2012), but overall there are good chances that we can observe them. Indeed,
for example, Tanaka and Haiman, 2013 a�rm that these oscillations should
be easily detected during an extended observation with Astro-H 13. In the
paper by McKernan et al., 2013, it is said that even with the XMM-Newton

12 But there could be others. See for example Yan et al., 2014, where they suggest to use
light curves and size-wavelength relation to infer binary properties, or Kulkarni and Loeb,
2016, where they propose to use possible radio jets emission from inner disk accretion, just
as a regular AGN, to understand the binary system.

13 The paper was written before the unsuccessful lunch of Astro-H. We will see later
that other missions will be capable of this observations.
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Figure 3.5: Black data points correspond to simulated data where the secondary

line centroid lies at 7.3keV and the blue solid line corresponds to the

best-�t model to the data. The red solid line corresponds to the best

model �t when the line centroid of the secondary lies instead at 5.2keV

(simulated data not shown for clarity). Further information on the text

and on McKernan et al., 2013, where the �gure was taken.

EPIC pn, through repeated observation, it should be possible to detect these
oscillations. For a review of the main X -ray observatories useful for this study,
see Tab. 3.1. From the table, we can see that an ideal instrument, to study the
wings of the line in detail, would be one with an e�ective area of LOFT and
resolution of Athena. Nonetheless, even with today XMM-Newton it should
be feasible to conduct useful observations, as shown in Figure 3.5.
Both the work by Sesana et al., 2012 and McKernan and Ford, 2015 show
that it will be feasible for next generation X-ray observatory to identify Fe
Kα features. As an example, see Figure 3.6. This is approximatively the same
as Figure 3.5, i.e. the AGN is at redshift z = 0.01 as previously, but in this
case the simulated observation is done by the Athena observatory, the time
exposure is 100 ks (≈ 1 day) and the �ux is lower, 4.5 · 10−12 erg cm−2 s−1.
With respect to Figure 3.5, we can clearly see how the line shapes will be
easily detected with the new generation observatory. Note that for sources
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Figure 3.6: A simulated 100 ks observation with the Athena microcalorimeter of

an AGN at z= 0.01, with a 2− 10 keV �ux of 4.5 · 10−12 erg cm−2 s−1.

Black data points correspond to simulated data where the average line

centroid shift is δE/E = +0.004, and the blue solid line corresponds

to the best-�t model to these data. The red solid line corresponds to

the best model �t when δE/E = −0.004 (simulated data not shown

for clarity). Figure from McKernan and Ford, 2015.

with redshift z = 1, the �ux is14 ≈ 4 · 10−5 lower than the �ux of a source
with the same luminosity at z= 0.01. This means that, to have a number of
counts acceptable, we should increase the observation time of one order of
magnitude, at least, i.e. 106 s, while in order to have the same number of
counts, the integration time would be too long. To have a de�nitive results,
though, one should run a simulation with the source at z = 1. For this reason,
observations of sources at these distances are more complicated and it is not
clear, yet, how well we could observe such features.
A special mention must be made for the Square Kilometer Array. Indeed, it
will allow us to resolve individual SMBBHs emitting GWs in the PTA range

14 From f = L/4πd2
L, where f here stays for �ux, d2

L(z = 0.01) = (43.4)2 Mpc2 and
d2
L(z = 1) = (6701.2)2 Mpc2. I used ΩM = 0.28, ΩΛ = 0.71, and H0 = 69.6 km/s/Mpc.
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(Sesana et al., 2012) and therefore it will give us an extremely powerful tool
to study these system in detail.

3.2.2 Observation
There are already some examples of real observations which suggest the

presence of a binary system that I just portrayed:

- Graham et al., 2015 report the detection of a strong, smooth periodic
signal in the optical variability of the quasar PG 1302-102, with a mean
observed period of 1884± 88 days, shown in Figure 3.7. They suggest
that this periodicity is due to the fact that the AGN is actually a bi-
nary system of BHs and the periodicity is given either by a preceding
jet, periodic mass accretion, or a warped disk eclipsing part of the con-
tinuum as it precesses.
About the same AGN, D'Orazio et al., 2015 try to explain this peri-
odicity stating that it is due to a lump in the circumbinary disk. That
would mean that the actual period of the SMBBH is 3−8 times shorter
than the 5.2 years of the optical signal variability.
This last explanation is very plausible, but has to be further proven
with other observation, for example in the high energy X-ray spectrum.
Until then, the uncertainties are still too large to give any de�nitive
conclusion.

- Bon, 2016 present an analysis of 43 years (1972 to 2015) of spectro-
scopic observations of the Seyfert 1 galaxy NGC 5548. Observations
reveal a ∼ 5700 days periodicity in the continuum light curve, the Hβ
light curve, and the radial velocity curve of the red wing of the Hβ
line, see Figure 3.8. Among others explanations, they suggest that this
periodicity is due to the fact that the system is a SMBBH. Also in this
case, though, this hypothesis is not strong enough and can not be fur-
ther proved. That is because studies on some SMBBHs models similar
to this real case do not give yet details in possible emission features
corresponding to the data we currently have, and models themselves
could have di�erent con�gurations than this case. In other cases, where
Bon, 2016 tested a model, the result were not totally in agreement with
data. Therefore, for the moment, other explanation are more plausible.

- Liu, Eracleous, and Halpern, 2016 looked for periodic a signal in the Hα
line for 13 possible SMBBHs system. They conclude that any periods
are signi�cantly longer than their monitoring span, and/or mechanisms
other than orbiting BHs are responsible for their double-peaked broad
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Figure 3.7: The composite light curve for PG 1302-102 over a period of 7338 days

(∼ 20 years). The light curve combines data from two CRTS telescopes

(CSS and MLS) with historical data from the LINEAR and ASAS sur-

veys, and the literature. The error bars represent one standard devi-

ation errors. The dashed line indicates a sinusoid with period 1,884

days and amplitude 0.14 mag. The uncertainty in the measured period

is 88 days. Note that this does not re�ect the expected shape of the

periodic waveform which will depend on the physical properties of the

system. MJD, denotes the modi�ed Julian day. Figure from Graham

et al., 2015.

Hα lines and their line pro�le changes. This, and the previous example,
prove how di�cult this task is and that the search for SMBBHs could
be really time demanding with current technologies and data, and that
not always will lead to a certain SMBBH detection. Nonetheless, their
articles are a good review to better understand what to expect from a
SMBBH in terms of spectral analysis.

- Kun et al., 2014 perform an analysis of long-term VLBI data of the
quasar S5 1928+738 in terms of a geometric model of a helical structure
projected onto the plane of the sky. The quasar is at redshift z = 0.302.
By studying the radio jets emission data, they infer a binary with period
of T = 4.78 ± 0.14 yr, mass Mtot = 8.13 · 108 M� and therefore a
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Figure 3.8: Radial velocity curves resulting from �tting a Gaussian to the broad

Hβ line of NGC 5548. The solid red line shows the best �t of a sine

wave of period 5700 days. Figure from Bon, 2016.

separation of R = 0.0128 ± 0.0003 pc. This system have parameters
allowing to be resolved and observed by PTA. For this reason, this is
on of the best candidate for a SMBBH system.



Chapter 4

Time delay

This chapter is the heart of my work. Here, I describe the time delay
between the gravitational and EM signal, discussed previously. I will illustrate
how to calculate such a time delay for the wavelengths I am interested in and
constrain how well can we observe this lag nowadays and in the future. I will
use all the information written above in chapter 2 and 3, including also the
background set in chapter 1 and articles from literature.

4.1 Calculate time delay
In order to calculate the time delay between GWs and EM signal, we

�rst need to understand how the waves are lensed. For the light, this is
simple because we can use the geometrical optics approximation. Then, the
time delay is just given by eq. (1.23). For the GWs, the calculations are less
trivial, because we are in the wave optics regime. I will derive here the time
delay for both point masses and SIS lenses.

4.1.1 Lensed GWs

To calculate the lensed form of GWs, h̃L+,×(f), we need to use the ampli-
�cation factor. This is a complex function, F (f, β), where f is the frequency
of the GW1 and β is de�ned in Figure1.4, given by the di�raction integral
(derived in Schneider, Ehlers, and Falco, 1992),

F (f, β) =
DdDs

cDds

(1 + zd)f

i

∫
d2θ exp[2πiftd(θ, β)], (4.1)

1 For all this chapter, we consider monochromatic GWs, with frequency f .
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where Dd, Ds, Dds, θ and β are de�ned in Figure1.4, and the time delay,
td(θ, β), is de�ned in eq. (1.23). Then, the lensed GW is given by the product
of the unlensed waveform, h̄+,×(f), derived in chapter 1.1, and the ampli�-
cation factor, F (f, β),

h̃L+,×(f) = F (f, β) · h̄+,×(f). (4.2)

To simplify the problem, we can consider the equation through dimensionless
quantities, and rewrite them in term of the distances (Dd, Ds and Dds) and
of the Einstein radius, θE [de�ned in eq. (1.30)]:

θ ⇒ x =
θ

θE
, (4.3a)

β ⇒ y =
β

θE
, (4.3b)

f ⇒ w =
DdDs

cDds

θ2
E(1 + zd)2πf = 8π

GMz

c3
f, (4.3c)

td ⇒ T (x, y) =
cDds

DdDs

θ−2
E (1 + zd)

−1td(θ, β) =
c3

4GMz

td(θ, β), (4.3d)

where, in the last two equations, I substitute the value of the Einstein's
radius. The ampli�cation factor is then

F (w, y) =
w

2πi

∫
d2x exp[iwT (x, y)]. (4.4)

The time delay of the GW is de�ned from the phase of the ampli�cation
factor,

TGW (w, y) ≡ − i

w
ln

(
F (w, y)

|F (w, y)|

)
. (4.5)

Note that this time delay, unlike the one for light, depends on the frequency
of the wave.
For a point mass lens, the ampli�cation factor is obtained by numerical in-
tegration (Takahashi and Nakamura, 2003),

F (w, y) = exp

[
πw

4
+
iw

2
ln
(w

2

)]
Γ

(
1− iw

2

)
1F1

(
iw

2
, 1;

iwy2

2

)
, (4.6)

where 1F1 is the con�uent hypergeometric function (Peters, 1974). From eq.
(4.5), and for w � 1, we can derive the time delay, for GWs due to a point
mass lens, as an expansion in w,

TGW (w, y) =
1

2

[
ln
(w

2

)
+ γ
]

+O(w2) , (4.7)
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where γ = 0.577215... is the Euler constant.
For a singular isothermal sphere lens, the ampli�cation factor is obtained by
numerical integration as well. The time delay, in this case, is

TGW (w, y) = −
√
π

2
w−1/2 −

(
1− π

4

)
+O(w1/2) . (4.8)

4.1.2 Lensed light
The time delay for the EM signal is calculated in the geometrical optics

regime, and it is given simply by eq. (1.23), or, in the dimensionless form, by
eq. (4.3d).
For a point mass lens, recalling eqs. (1.27), (4.3a) and (4.3b), we obtain

TEM,±(y) =
y2 + 2∓ y

√
y2 + 4

4
− ln

∣∣∣∣∣y ±
√
y2 + 4

2

∣∣∣∣∣ . (4.9)

For a SIS lens, we have θ± = β ± θE, and therefore

TEM,±(y) = ∓y − 1

2
. (4.10)

As said before, at the end of section 1.2, all these time delays can be negative
since the lens potentials, ψ (de�ned in Tab. 1.1), are not normalized to zero
at in�nity. And, again, this is not a problem since we are not interested in
the absolute time delay, i.e. with respect to the unlensed case, but in the
di�erence between gravitational and EM signal arrival time.

4.1.3 Time delay
We now have all the information, summarized in Tab. 4.1, to calculate

the time di�erence between gravitational and EM signal, de�ned as

∆TEM,±−GW (x,w) = TEM,±(y)− TGW (y, w). (4.11)

Usually, though, the arrival time di�erence is measured not as a time, but
from the phase di�erence of the two waves. For this reason, what should be
calculated is the (dimensionless) phase di�erence, given by w∆TEM,±−GW .
From this dimensionless quantity, we can obviously reconstruct the dimen-
sional one. In particular, we can write

∆tEM,±−GW =
1

2πf
w∆TEM,±−GW = 0.16 · w∆TEM,±−GW

(
f

Hz

)−1

sec.

(4.12)
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For a point mass lens, we can calculate the maximum phase di�erence, for
di�erent source positions, y, (see Tab. 4.2) between the brighter EM image
(TEM,+) and the GW. For y = 0.01, it is w∆TEM,+−GW ' 0.55. Therefore,
the maximum time delay, between EM and gravitational signal, is

∆tmaxEM,+−GW = 0.09 sec

(
f

Hz

)−1

. (4.13)

Therefore, for f ≈ 10−8 Hz (i.e. T ≈ 3 yr), ∆t ≈ 3.5 months. For f ≈
10−6 Hz (or T ≈ 11 days), ∆t ≈ 1 day.
In the case of a SIS lens, for a source at y = 0.01,

∆tmaxEM,+−GW = 0.1056 sec

(
f

Hz

)−1

. (4.14)

In this case, for f ≈ 10−8 Hz, we get ∆t ≈ 4 months, that is slightly larger
than before, as expected.
Note that having taken the value from Tab. 4.2, the dimensionless frequency
w is �xed. Remembering its de�nition [eq. (4.3c)], w ∼ Mf . For a �xed w,
also the product of f and M is �xed. That is, in the �rst example, we would
have ∆t ≈ 3.5 months for a lens with2 M ≈ 8.3 · 1011 M�, a reasonable mass
for a galaxy. That is not a problem, since in a real case, if the lens mass is
known, we can just insert the value in the equations. If it is not, we can use
these equations to put constraints on its mass. In this last case, though, we
have to possess a measure of the time delay and we need to remember that
the lens mass enters also in the equation for the e�ective lensing potential
(see Tab. 1.1) for a point mass lens. For a SIS lens, the mass does not enters
in the potential equation, but we have to know the one-dimensional velocity
dispersion of the stars composing the galaxy, which act as a lens.

4.2 Sensitivity of observations
I just talked about the theoretical calculations. Let us now concentrate

on the observational issues. As I explained above in chapter 2, the detection
of GWs, in the wavelengths range I am interested in, is a recent and evolving
�eld. Up to now, no direct observations of GWs has been feasible with PTAs.
Here, I try to estimate how good, in terms of S/N ration, the observations
need to be, not just to detect GWs from a single source, but also to detect
the time delay.

2 From eq. (4.3c), w = 1.1 = 1.3 · f/Hz ·M/104M�. Here I took a redshift for the lens
of z = 0.1.
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Lens y w w∆Tmax (rad) ∆Tmax · (f/Hz)−1 (sec)

point mass
1 0.23 0.11 0.018
0.1 0.92 0.46 0.073
0.01 1.10 0.55 0.088

SIS
1 0.12 0.15 0.024
0.1 1.32 0.51 0.082
0.01 2.25 0.66 0.106

Table 4.2: Examples of maximum time delay for di�erent source position, y, both
for point mass and Sis lens. The w are obtained setting to zero the

derivative of ∆tEM,+−GW (w, y) with respect to w, and the ∆Tmax are

obtained inserting this value of the w in the relative equations.

In the work by Cutler and Flanagan, 1994, and as reported also by Takahashi,
2016, we learn that, in a matched �ltering analysis, the phase of the waveform
can be roughly measured within the accuracy of the inverse signal-to-noise
ratio ≈ (S/N)−1. That is, e.g. for a S/N=10 we can measure the phase
di�erence if ω∆TEM,±−GW & 10−1 rad. Or, conversely, to detect a phase
di�erence of3≈ 0.11, we need a signal-to-noise ratio of S/N & (0.11)−1 ' 9.1.
Note that, both GWs and EM phases enters in w∆Tmax. Of course, though,
the observation for GWs is much more complicated than the one for the EM
counterparts. For this reason, I will now concentrate on determine the signal-
to-noise ratio just for GWs from PTAs detections.
The most important references, in this case, are the one by Moore, Taylor,
and Gair, 2015 and Huerta et al., 2015. From Moore, Taylor, and Gair, 2015,
we have

S/N = %2 ≈ 1

2
Np(Np − 1)Tobs

∫ T

0

dt
χ4h4

c sin4(2πft+ φ)

σ4f 4δt2
, (4.15)

where Np is the number of pulsars in the array, Tobs is the total baseline
time of observation, χ is the sky-averaged value of the geometric factor in
eq. (3.3), χ = 1/

√
3, hc is the strain of noise �uctuations in the detector, f is

the GW frequency, sinφ is a constant o�set from zero in the timing residual,
σ2 is the variance of the statistic S/N ratio, in the absence of a signal, and
1/δt is the observing cadence of the timing-residual of the pulsars.
A simpler equation is given by Huerta et al., 2015. They consider binary
systems with eccentricity e 6= 0. Here, I derive and consider the equations in

3 I took the lowest value in Tab. 4.2.
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the limit of e = 0. Then, we have

ρ2
high = B̂ · f−2/3

orb , for f &
2

Tobs
, (4.16a)

ρ2
low = Ĉ · f 16/3

orb , for f .
2

Tobs
, (4.16b)

where Tobs is the total baseline time of observation, and therefore Tobs ∼ fobs,
that is the lowest frequency detectable by the PTAs4, forb is the orbital
frequency of the SMBBH (Ω in Figure 1.1), B and C are

B̂ =
4 3
√

2π4/3Np(Np − 1)

45

TobsM10/3(1 + z)4

d2
L∆tσrms

, (4.17a)

Ĉ =
4 3
√

2π4/3Np(Np − 1)

45

T 7
obsM10/3

d2
L(1 + z)2∆tσrms

, (4.17b)

where Np is the number of pulsar in the PTA, dL is the luminosity distance
to the source, σrms is the root mean square of the timing noise, and 1/∆t is
the cadence of the measurements. In order to give some numerical example,
I rewrite eqs. (4.16a) and (4.17a) as5

ρ2
high = ρ̂2 · (1 + z)4

(
forb
fobs

)−2/3

, (4.18)

with

ρ̂2 = 4.26 · 10−2Np(Np − 1)

(
M

108M�

)10/3(
Tobs

10 yr

)5/3

×

×
(

100 Mpc

dL

)2(
100 ns

σrms

)(
0.05 yr

∆t

)
.

(4.19)

Now, let us make some numerical calculations. First of all, as constant values
through the next examples, and in Tab. 4.3, I consider sources at redshift
z = 1, that is a luminosity distance of dL ' 6.7 Gpc, a total observing time of
Tobs = 10 yr (and therefore a fobs = 2 · 3.17 · 10−9 s−1), an observing cadence
of 1 week, i.e. ∆t ' 0.02 yr, and a timing noise with σ ≈ 100 ns. These are
good approximations for current PTAs, and the sources we are looking for.
The uncertainties could be in ∆t, because one week is an ideal situation, and

4 Nonetheless, the case for f . 2/Tobs is usually taken into account to completeness, and
because SMBBHs with eccentricity e 6= 0 emit a spectrum of di�erent GWs wavelengths.
I will brie�y talk about this case in the last chapter.

5 I just consider the case of f & 2/Tobs.
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σ ≈ 100 ns is the lowest limit nowadays.
For a PTA with Np ' 30 pulsars, as IPTA is, and a SMBBH with two BHs
of m1 = m2 = 108 M�, we have a signal-to-noise ratio ρ2 ≈ 0.24, for a
f = 2forb = 10−8 Hz, and ρ2 ≈ 0.01, for a f = 2forb = 10−6 Hz. As we can
understand from previous considerations, and general knowledge, this value
is too low to detect the largest time delay we calculate in section 4.1.3 (see
Tab. 4.2), and even to recognize just the GW signal. Therefore, with current
technologies, and the assumptions made above, such an observation would
be impossible. We can calculate what would be the minimum mass of the
binary system, to actually detect the time delay calculated previously. I set
the minimum signal-to-noise ratio at S/N & 5. Then, the SMBBH has to
have a mass of at least 6.3 · 108M�, for the time delay to be detectable up to
the GW frequency of f = 10−6 Hz. It follows, from eq. (4.18), that a higher
sensitivity is necessary to detect the time delay for a smaller GW frequency.
Therefore, if it is enough for f = 10−6 Hz, it is for sure enough also for
f = 10−8 Hz, see Tab. 4.3.
Even though these observations could look feasible, as I said previously, we
do not have even made any GW observations with PTA, yet, and therefore
nor time delay detections. This could be due to several reasons, among which,
we do not have enough precise data yet, models to study the TOA and the
corrections for all the several errors (see section 2.2) are still to be improved,
or also, there are no such sources or there are very few of them.
This was the case for current observatories. For the future, the SKA will
improve largely on the sensitivity of the observations, i.e. reduce for example
σrms, it will detect and study a lot more pulsars, and therefore will give
us the opportunity to detect the time delay much more easily than today.
For example, I calculated the value of the signal-to-noise ratio of an array
with Np = 500 pulsars, that is what we think the SKA will be capable of. I
maintained all other values as before. Then, again for a SMBBH with mass
of 108M�, ρ

2 ≈ 3.2 for f = 10−6. This is still a rather low value, but much
higher than the previous one. With a mass of 1.5 · 108, the observation could
be feasible. All this numerical examples, and others, are summarised in Tab.
4.3.



4.2. SENSITIVITY OF OBSERVATIONS 51

frequency (s−1) Np Mass (M�) S/N

10−8

30
1.0 · 108 0.24
2.5 · 108 5.3
3.0 · 108 9.3

500
3.5 · 107 1.9
5.0 · 107 6.6
1.0 · 108 70

10−6

30
1.0 · 108 0.01
6.3 · 108 5.2
8.0 · 108 11

500
5.0 · 107 0.3
1.0 · 108 3.2
1.5 · 108 12

Table 4.3: Examples of signal-to-noise ratios, for di�erent masses of the SMBBHs,

di�erent number of pulsars in the PTA, and for the two limit frequencies.

Note that from eq. (4.18), S/N is higher for lower frequency, when all

other parameters are the same.



52 CHAPTER 4. TIME DELAY



Chapter 5

Conclusions

In this chapter, I summarize all the thesis brie�y. Then, I recap the �nal
results of my work and discuss them. Finally, I present future works, which
can be pursued taking this thesis as an initial point.

5.1 Summary
The goal of this thesis is to measure the time delay between gravitational

and electromagnetic signals, due to gravitational lensing. To ful�l this goal,
many di�erent subjects were taken into account and studied. First of all, I
gave the basic information about the nature of gravitational waves, i.e. what
are they and how to derive their existence from general relativity. Then, I
gave a simple example of a binary star system, that could be adapted to the
SMBBHs case. As part of the background knowledge, I also talked about
gravitational lensing, by point masses and singular isothermal sphere lenses,
and stated the di�erence between geometrical and wave optics.
Chapter 2 was about detection of GWs. I explained how PTAs work, what
are the main challenges in this �eld, and what are the main present result, a
part from what we expect to detect in future.
After that, I focused on the sources of the signals, SMBBHs. These systems
are under large investigations nowadays, and there are still many uncertain-
ties in their creation and development and, therefore, in their signals. We
know, though, that such systems have some particular features that should
bring unique EM signals. There are already some observations that may be
explained in this way. All this is discussed in chapter 3.
Finally, chapter 4 is the heart of this work. There, I derived how to calculate
the time delay for both point masses and singular isothermal sphere lenses.
Furthermore, I discuss how well GWs observation should be performed to
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actually see those time delays. I gave di�erent examples and the result of
this work, that are summarised and discussed in the following chapter.

5.2 Final results & discussion
I studied the time delay between GWs and EM signals from SMBBHs.

With future data from SKA, I showed that we will be able to measure the
gravitational signal, coming from SMBBHs with total mass M & 108 M�,
with a S/N ≈ 3, at least. Together with observations from next generation
X-ray satellites, whose sensibility needs to be further studied for distant
sources, used to detect the EM counterparts, this will allow us to measure
time delays of the order of months, that is a typical delay given by a galaxy,
acting as a gravitational lens, of mass M ≈ 1011 M�.
The results obtained in this thesis are to be considered an approximation
and, in some way, a simpli�cation of the real case. Indeed, throughout this
work I made a series of assumptions to simplify the numerous problems.
That is because they are still under investigation, and because a deep study
of the whole matter and issues is outside the scope of this thesis. Indeed,
every chapter of this thesis could be a whole thesis work in itself, or even
more. Nonetheless, the results are valuable and a �rm starting point for fu-
ture studies.
The main result is the fact that, with the next generation observatories, and
with SKA in particular, we will de�nitively be capable of detecting the time
delays between GWs and EM signal, for a large range of sources (SMBBHs
composed by black-holes of M & 108 M�). The main issues of these ob-
servations is, for sure, the detection of GWs with high sensitivity. I showed
that, with a number of pulsar large enough, and with constant, prolonged
and precise observations, this will be possible. The precision of the detection
does not depend just on the power of the observatory, but also on the exact
correction of the noises and extrapolation of the signal. Furthermore, the
EM counterpart will be easily detectable as well, for close sources, while for
sources at redshift z ≈ 1, it is not still clear how well this can be pursued (see
chapter 3.2.1). For example, as shown in chapter 3.2, with the next X-ray
satellite observatories, we will observe the unique EM signals coming from the
sources. The fact that these are particular signals, expected just from binary
SMBHs systems, is an advantage. Indeed, we could recognize and identify
these sources easily, and we could use this feature in future surveys to �nd
more of these systems (about this, see also chapter about future works).
Nowadays, the whole problem is a bit more complicated. According to the re-
sult of previous chapters, both GWs and EM signal from these sources are, in
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theory, detectable with current technologies, even though it is very di�cult.
Indeed, any sign of them are yet to be found (GWs with PTAs, see chapter
2.2.2) or completely accepted and explained (EM signal, chapter 3.2.2). The
e�ort towards a detection, though, is growing with time (just think about
the IPTA), and the whole �eld, from GWs to SMBBHs, is being deeply re-
searched and is of great interest nowadays. Therefore, given the result of this
work, and the many studies and recent articles about this subject, I expect
exiting results in the next few years.

Once we certi�ed the theoretical feasibility of the observation, the main
problem about the measurements is, to me, to couple the two di�erent signals.
That is, let us assume, as an ideal case, that we know everything about the
source, the lens and we can measure the signals as precisely as we want.
To prove, through observations, that the results of this thesis are valid, one
should observe the signals emitted at the same time, or with a know time
lag, from the source, which arrives with a certain time delay at Earth. In the
real case though, the signals reaching the Earth are continuous and it could
be tricky to couple two signals of di�erent nature, arriving months one from
another. The study of the evolution of the source with time could, in this
case, help us. For example, if we know that at a certain point we expect some
kind of di�erent signal from the source, or if we know that to a certain EM
signal corresponds a particular frequency in the gravitational signal, then
we could couple the signals. Furthermore, the pulsar term, explained in 2.2,
could be useful since it gives gravitational images of the sources at di�erent
times1.
For all these reasons, the utility of this work can be seen from two di�erent
point of views:

i. assuming that we know how to couple these two di�erent signal, i.e. we
can assert the time delay of the signals at the source, then, by studying
their time delay at Earth, we can reconstruct the shape of the lens and
study it in some detail;

ii. on the contrary, if we know the characteristic of the lens, by measuring
the two signals and knowing what the theoretical time delay should be,
we have a powerful tool to study the source. This could be very useful,
given the interest about these sources lately, and since many galaxies
are expected to have or have had such a system in their center.

There could be times when both the lens and the source are unknown. In
those cases, little can be done. One chance, if we are lucky enough, could be

1 Even though being an interesting issue, I did not spend much time talking about it
because its detection is very complicated, since it is di�erent for every pulsar.
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to constrain the mass of the lens by studying di�erent EM images, and then
use that information to study the delay with the gravitational waves.

5.3 Future works
As we could see throughout the whole thesis, all subjects treated com-

prehend a wide �eld of study. The �rst possible work would be to deepen
the knowledge in all these di�erent subjects. The main example, in this case,
is the study of SMBBHs. Indeed, there are many uncertainties in this �eld,
and a deeper study is necessary to better understand their evolution and,
therefore, their emissions, both of GWs and light. This study has to be con-
ducted mostly by computer simulations, but, to date, the problem is too
complicated to make a "complete" 3D simulation and, then, simpli�cations
have to be done. A better modelling of the EM signal could also bring other
interesting information for future work. Using surveys that study all the sky,
we could look for the unique signals expected from SMBBHs sources and
therefore recognize them much easier than today. One of the future surveys
that, among other goals, will look for these features is the Large Synoptic
Survey Telescope (LSST)2.
Another possible work could be to extend the results found here, to more
general cases. For example, I considered a binary system with two BHs of
the same mass, and with an eccentricity e = 0. Of course, in nature, we �nd
all di�erent cases and non zero eccentricity is believed to be the usual case
for these system, because of their evolution and interaction with surrounding
matter. Furthermore, SMBBHs with e 6= 0 are expected to emit in more than
one frequency, giving birth to a spectrum, depending on their eccentricity.
This could be interesting to study, since, as we saw in chapter 4.1.1, the time
delay for the GWs depends on the frequency of the wave.
One last, and more di�cult task, could be to study more in detail the pulsar
term of the PTAs. As I explained, this could be useful since every pulsar gives
a picture of the source at di�erent epochs, depending on their distance to
Earth. Since the GWs frequency change with time, this could be a powerful
tool. The problem, though, is that, while for the Earth term all the signals
sum up to give one single signal, for the pulsar term this is no longer the
case, and the signal will be much fainter. This bring the pulsar term to be
neglected and ignored nowadays. To observe and study such a feature, then,
is a task for the future.

2 https://www.lsst.org/

https://www.lsst.org/
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About I and GWs

I will try to explain here brie�y how from

h̄αβ(t, ~x) −−−→
r→∞

4

r

∫
d3x′[Tαβ(t− r, ~x′)]ret (1.13)

we can derive

h̄ij(t, ~x) −−−→
r→∞

2

r
Ï ij(t− r). (1.14)

First, recall the �at-space conservation for stress-energy tensor: ∂βT
αβ = 0.

From this
∂T tt

∂t
+
∂T kt

∂xk
= 0. (A.1)

Di�erentiating this equation with respect to time, and using the symmetry
T kl = T lk we �nd

∂2T tt

∂t2
+
∂

∂t

(
∂T kt

∂xk

)
= 0,

⇓
∂2T tt

∂t2
= − ∂

∂t

(
∂T kt

∂xk

)
=− ∂

∂xk

(
∂T tk

∂t

)
= +

∂2T kl

∂xk∂xl
. (A.2)

At this point we multiply both sides of (A.2) with xixj and integrate over
space (i.e., over d3x) where the right hand side is carried out by parts, to
obtain: ∫

d3xT ij(xµ) =
1

2

d2

dt2

∫
d3xxixjT 00(xµ). (A.3)
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Assuming the stress-energy tensor has no relativistic velocity (i.e. in the weak
�eld limit) then T 00 → ρ(x), that is the rest-mass density, we can de�ne the
quadrupole momentum:

I ij(t) ≡
∫

d3xxixjρ(t, ~x) (A.4)

and �nally, substituting (A.3) and (A.4) in (1.13), we get:

h̄ij(t, ~x) −−−→
r→∞

2

r
Ï ij(t− r). (1.14)
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