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What?

We investigate the possibility to achieve high precision on H0 measure-
ments by using gravitational waves (GWs) in an alternative way w.r.t.
current methods, like [1] and [2] which give respectively H0 = 70+12

−8

and 68+14
−7 .

In case of a multi-messenger detection and a contemporary gravita-
tional lensing event, we might measure the arrival time difference be-
tween the lensing time delay of the GW and of the electromagnetic (EM)
counterpart and from that infer H0.

Geometrical optics - EM signal

The EM signal can be described by standard geometrical optics as [3]:

tEM(~θ, ~β) =
1 + zl
c

DlDs

Dls

[
1

2
(~θ − ~β)2 − ψ(~θ)

]
. (1)

Wave optics - GW

If the mass of the lens Mlens < 105M�(f/Hz)−1, where f is GW fre-
quency, the time delay must be defined using wave optics [3] as:

TGW (w, y) ≡ − i
w

ln

(
F (w, y)

|F (w, y)|

)
, (2)

with: F , the amplification factor F (w, y) = w
2πi

∫
d2x exp[iwTEM(x, y)];

TEM and TGW , dimensionless times, by multiplying dimensional times
to the factor cDls

DlDs
θ−2
∗ (1 + zl)

−1; x = θ/θ∗, image position; y = β/θ∗,
source real position; w = DlDs

cDls
θ2
∗(1 + zl)2πf , dimensionless frequency;

and θ∗, a characteristic radius of the lens depending on the mass model.

Arrival time difference

Thus, the arrival time difference is:

∆TEM−GW(y, w) = TEM(x, y)− TGW(y, w). (3)

∆TEM−GW has no x-dependence because we calculate x from the lens
equation [4], providing y.

How?

Eqs. (1) and (2) depend on the cosmological model through the angular
diameter distances and the lens potential ψ. The Hubble parameter is

H2(z) = H2
0 · [Ωγ(1 + z)4 + Ωm(1 + z)3 + ΩDE(1 + z)3(1+w)]. (4)

We consider ΛCDM (w = −1) and quiessence (w = const. 6= −1).

Methodology

We proceed as follows:
1. we calculate ∆TEM−GW for a large set of input {Ωm, H0, w};
2. we assume an independent prior on Ωm from Planck, Ωm = 0.3061 ±

0.0052;
3. we infer the uncertainty on H0 by crossing the above prior with the

arrival time uncertainty.
A crucial ingredient is the uncertainty on the GW time delay. We con-
sider the Pulsar Timing Array (PTA), for which the error is σ∆T =

(2πfρ2)−1, with the S/N ratio ρ2 being [5]:

ρ2 = ρ̂2 · (1 + z)4

(
forb

fobs

)−2/3

, (5)

where forb is the orbital frequency of the Super Massive Binary Black
Hole (SMBBH) emitting the radiation and fobs is the lowest frequency

detectable by the PTAs, and with

ρ̂2 = 4.26 · 10−2Np(Np − 1)

(
M

108M�

)10/3

×

×
(
Tobs

10 yr

)5/3(
100 Mpc
dL

)2(
100 ns
σrms

)(
0.05 yr

∆t

)
.

(6)

We study two scenarios: i) a state-of-the-art sample made of 65 pulsars
[6]; ii) an “optimistic” future sample of 1000 pulsars detected by SKA
[7]. Moreover, we also vary: the redshift of the source: zl = 0.5, 1;
the real position of the source: y = 0, 0.1, 1; and the mass model for
the lens, using a Singular Isothermal Sphere (SIS) and a Navarro-Frank-
White (NFW). For SIS we consider a typical stellar dispersion velocity
σ∗ = 220 km/s; for NFW we assume a realistic model as observed in [8].

zl
M Tobs σrms ∆t

Np
σ∆T

(108M�) (yr) (ns) (yr) (days)

0.5 (1) 5 10 100 0.05
1000 0.005 (0.008)

65 1.099 (1.883)

Results

•ΛCDM: with ∼ 65 pulsar, we could match current precision on H0

from [9]. SKA will improve it by 2 order of magnitudes;

•quiessence: we need to combine multiple measurements to decrease
the error, at least n ∼ 10; but the probability of detection is low [3].

zl 0.5 1
σ∆T (days) 1.1 0.005 1.88 0.008
y ↓ | H0 → 68 74 68 74 68 74 68 74

NFW - w = −1

0.1 2.12 2.41 0.06 0.07 3.4 3.85 0.06 0.07
1 5.5 5.9 0.08 0.08 8.9 7.65 0.09 0.1

NFW - w free
0 14.80 16.20 12.70 14.20 15.10 16.90 12.70 13.90
1 17.50 18.90 13.20 14.30 nd nd 12.70 13.90

SIS - σ∗ = 220 (km/s) - w = −1

0.1 4.05 4.5 0.07 0.08 6.6 6.45 0.08 0.09
1 10 10 0.13 0.13 10 10 0.21 0.2

SIS - σ∗ = 220 km/s - w free
0 16.40 18.20 13.10 14.30 17.00 19.40 12.70 13.90
1 nd nd 13.30 14.40 nd nd 12.90 14.10
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