

Paolo Cremonese

UBC - Gravity seminar

07.09.2023

For the CUITIOUS

 Born in Treviso and graduated in Padova

• PhD in Szczecin, Poland

PostDoc in Palma, Mallorca

For the CULTIOUS

Born in Treviso an in Padova

• PhD in Szczecin,

PostDoc in Palma

Mar del Nord Edimburgo Copenaghen Glasgow Danimarca **Regno Unito** Isola di Man Amburgo Manchester Dublino Irlanda Birmingham Amsterdam -UIB gravity group

Gravitational Lensing Of Gravitational Waves

Geometrical-Optics vs Wave-Optics I_{-} GO approximation breaks when $M_{3D,L} \le 10^5 M_{\odot} \left[\frac{(1+z_L)f}{\text{Hz}} \right]$ $f \cdot \Delta t \leq 1$ $M_l = 11000 > 2 \cdot 10^3 = \frac{10^5}{f \approx 50}$ 0.2-0.20.00.4time [s]

Phase study of Lensed events

Unlensed vs lensed events

	Real parameter	Lense
$\mathcal{M}_{ob} \ [M_{\odot}]$	15.2	
q	0.27	
SNR	17.8 _{3 detectors}	

Unlensed vs lensed events

 $f \ [10^{-5} \text{ Hz}]$

Gravitational Wave lensing

amplification factor

$\hat{h}_L(f) = \hat{h}(f) \cdot F(f, y)$

unlensed waveform frequency domain

Lensed waveform frequency domain

Lens mass profile

Lensed waveforms

 $z_L = 0.5$

 $M_L(r_c) = 10^9 M_{\odot}$

$z_L = 0.15$

Lensed Waveforms match study

 $\Delta \chi^2 \approx 2\rho_{opt}^2 \quad 1 - \frac{\rho}{\rho}$ Popt

M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments, Gravitational Waves (OUP Oxford, 2008)

 $(h \ h_T)$

$$s(t) = h(t) + n(t)$$

Inner product:

$$(a \ b) = 2 \operatorname{Re} \left[\int_0^\infty \frac{\tilde{a}(f) \cdot \tilde{b}^*(f) + \tilde{a}^*(f) \cdot S_n(f)}{S_n(f)} \right]$$

- $S_n(f)$ - (single-sided) power spectral density

$3\sigma \rightarrow \Delta \chi^2 \approx 11.8 \ (14.2)$

Lensed Waveforms phase study

In a matched filtering analysis, the phase of the waveform can be measured with an accuracy corresponding to the inverse SNR

$\sigma_{\phi} \approx \rho^{-1}$ rad

6

NFW-2

5

 $f [10^{-5} \text{ Hz}]$

C. Cutler, E. E. Flanagan, Phys. Rev. 1994, D49, 2658.

8

Unlensed vs lensed Lensed waveforms

We would need $\rho \approx 4000$

Unlensed vs lensed Lensed waveforms

 $\rho \approx 100$ $\frac{\rho}{\rho_{opt}} = 0.9869$ $\Delta \chi^2 \approx 11.8$ $\frac{\rho}{\rho} = 0.9994$

SNR of the signal SIS / gNFW $_{\gamma=2}$

2 free parameters 3σ threshold

We would need $\rho \approx 2200$

Conclusions 1/2

o Lensed events can be misinterpreted by unlensed one

- Studying the phase of the signal is more effective than matched filtering
- We can differentiate between lens models Differentiating between models is useful to study dark matter/dark energy content

Mass-Sheet Degeneracy in Gravitational-Waves microlensing

 D_L

• Scalings of lens mass:

$$-\kappa \to \kappa_{\lambda} = \lambda \kappa + (1 - \lambda)$$

• Scaling angles:

$$-\overrightarrow{\alpha} \rightarrow \overrightarrow{\alpha}_{\lambda} = \lambda \overrightarrow{\alpha} + (1 - \lambda) \overrightarrow{\theta}$$
$$-\overrightarrow{\theta}_{s} \rightarrow \overrightarrow{\theta}_{s,\lambda} = \lambda \overrightarrow{\theta}_{s}$$

E. E. Falco, M. V. Gorenstein, and I. I. Shapiro, ApJ 289, L1 (1985)

Σ - surface mass density

 $\kappa = \Sigma / \Sigma_{cr}$

• Scalings of lens mass:

$$-\kappa \to \kappa_{\lambda} = \lambda \kappa + (1 - \lambda)$$

Scaling angles:

$$-\overrightarrow{\alpha} \rightarrow \overrightarrow{\alpha}_{\lambda} = \lambda \overrightarrow{\alpha} + (1 - \lambda) \overrightarrow{\theta}$$

$$-\overrightarrow{\theta_{s}} \rightarrow \overrightarrow{\theta_{s, \lambda}} = \lambda \overrightarrow{\theta_{s}}$$

E. E. Falco, M. V. Gorenstein, and I. I. Shapiro, ApJ 289, L1 (1985)

2.0 - $\Rightarrow 1.5 -$ 1.0 - 0.75 - 0.50 - 2 - 0.25 -0.00 -

Why a problem?

- Observables are preserved!
- Problems: e.g. biased estimations of mass lens
- Biased estimation of cosmological parameter, e.g. H_0

Can we solve it?

- EM geometrical optics regime: multiple images; independent mass estimation of the lens (e.g. dynamics)
- EM wave optics regime: multiple lenses
- In GW lensing: 1 image and 1 lens can break MSD!

Gravitational Lensing of Gravitational Waves

lensed waveform

frequency domain

amplification factor

unlensed waveform frequency domain

Gravitational Lensing of Gravitational Waves

lensed waveform

frequency domain

 λ dependent amplification factor

 $\hat{h}_I(f) = \hat{h}(f) \cdot F(f, y, \lambda)$

unlensed waveform frequency domain

PE analysis

Injection $\lambda = 1$

	Parameter	Value
	M	71.78
	\overline{q}	0.94
ed waveform	d _L [Mpc]	1300
	$\cos \theta_{JN}$	0.95
	$M_{l,r} [M_{\odot}]$	700
	У	1.2
	λ	1
	detectors	H1,L1,V
	optimal SNR	78
) 80 100	wfapprox	IMRPhenor

PE without λ

- High correlation $\overline{M_{l,r}}$ - y

- High correlation $d_L - \theta_{JN}$

PE with λ

- NO CORR $M_{l,r}$ - y correlation to $M_{l,r} - \lambda$ luminosity distance d_{L} _ - smaller corr w/ θ_{IN} - high corr w/ $M_{l,r}$ - high corr w/ λ

Injection $\lambda = 0.8$

78
94
00
95
0
2
8
1,V1
8
nom

- High correlation $M_{l,r}$ y
- High correlation $d_L \theta_{IN}$
- Value of y OK
- Value of $M_{l,r}$ changes
 - absorbs $\lambda = 0.8$, not as expected
 - because of d_L and y

PE with λ

- All parameters retrieved correctly

- NO CORR $M_{l,r}$ - y

- correlation to $M_{l,r} - \lambda$

- luminosity distance d_{L}

- smaller corr w/ θ_{IN}

- high corr w/ $M_{l,r}$

- high corr w/ λ

Real(istic) events

Parameter	Injection	Injected GW200208	GW200208
M	71.78	38.97	38.90
\overline{q}	0.94	0.76	0.77
d _L [Mpc]	1300	2294.6	2770
$\cos heta_{JN}$	0.95	- 0.83	- 0.83
$M_{l,r} \ [M_{\odot}]$	700	1693.47	1900
У	1.2	1.46	1.5
λ	1		
detectors	H1,L1,V1	H1,L1,V1	H1,L1,V1
optimal SNR	78	19.12	9.91

Injected GW200208

GW200208

Conclusions 2/2

- The MSD is parametrised correctly
- For injections
 - y correlates far less with λ than $M_{l,r}$
 - considering λ increases $M_{l,r}$ errors
 - the behaviour of $M_{l,r}$ and y depend considerably on other parameters (d_L)
 - we are able to solve the degeneracy
- For a real(*istic*) event
 - Iow SNR complicates everything
 - degeneracy is not transmitted to λ
 - λ correlates much more with d_L than $M_{l,r}$ or y

Universitat de les Illes Balears

Institute of Applied Computing & Community Code.

Finançat per la Unió Europea

Next GenerationEU

CONSELLERIA FONS EUROPEUS, JNIVERSITAT I CULTURA

CONSELLERIA MODEL ECONÒMIC, **TURISME | TREBALL**

soib formació i ocupació

Barcelona Supercomputing Center Centro Nacional de Supercomputación

PID2022-138626NB-I00, PID2019-106416GB-I00, RED2022-134204-E, RED2022-134411-T, funded by MCIN/AEI/ 10.13039/501100011033; the MCIN with funding from the European Union NextGenerationEU/PRTR (PRTR-C17.I1); Comunitat Autonòma de les Illes Balears through the Direcció General de Recerca, Innovació I Transformació Digital with funds from the Tourist Stay Tax Law (PDR2020/11 - ITS2017-006), the Conselleria d'Economia, Hisenda i Innovació grant numbers SINCO2022/18146 and SINCO2022/6719, co-financed by the European Union and FEDER Operational Program 2021-2027 of the Balearic Islands; the "ERDF A way of making Europe"; and EU COST Action CA18108.

